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The design & analysis of more complex scientific studies

In Part 1 we used the t-test to test the probability that two samples come from the same 
true population. Examples include tests of field observations, e.g. comparison of mussel 
lengths between two locations, or in manipulative experiments, e.g. testing a model of the 
effect of two diets on growth rate. In Part 2 we extended this to tests of many samples 
using linear regression. However, linear regression requires that there is a simple 
relationship (linear) between the measured dependent variable and the different levels of 
the factor. Real scientific models are usually more complex and require more than two 
samples. Here are three examples:

1. There are more than two samples that are tested against the H0 of no difference. In 
Fig. 1A we are comparing the concentration of a defensive chemical compound in 
macroalgae among the locations. In other words the factor Locations has three 
levels, and there are three true statistical populations.

2. There may be several hierarchical spatial factors like in Fig. 1B where the 
hypothesis is that processes acting on different scales, e.g. salinity gradients and 
wave exposure, affect the abundance of a polychaete. The design in Fig. 1B allows 
for a test if and how much of the variation in polychaete abundance that is 
explained by the factors Bay, Site and among replicates (the residual variance).

3. An experiment is designed as a combination of factors. In Fig. 1C a test is 
performed of how the induction of a chemical defence compound responds to the 
factor Grazer (presence/absence) and to the factor Nutrients (low/high). One model 
makes the prediction that induction of the compound occurs when a grazer is 
present but only when nutrients are scarce. When the response to a factor depends 
on the levels of another factor this is called an interaction between factors and 
needs more advanced statistical methods. 

To test the hypotheses in the more complex designs in Fig. 1 we need more advanced 
statistical methods. One powerful method is the analysis of variance (ANOVA) and we will 
devote this Part 3 entirely to learn the technique of ANOVA. We have already met 
ANOVA in a simple form in Part 2 where it was used in regression analysis. Here we will 
extend ANOVA to many levels and multiple factors.
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Fig. 1.  Examples of more complex observations and experiments where ANOVA is suitable.

One-factor ANOVA

Imagine that we want to test if 3 species of copepods differ in their ability to induce a toxin 
in a dinoflagellate. The factor Copepod has 3 levels and we could test the H0 that the 
species do not differ by performing 3 different t-tests. There are, however, two problems:

1. With increasing number of factor levels the number of pairwise tests rapidly 
becomes very many (Table 1).

2. With increasing number of pairwise tests of the same samples we will increase the 
type 1 error (Table 1).

Table 1. More levels increase the number of tests and the type 1 error.

Number of levels Number of tests (k) Type 1 error, 1-(1-a)k

2 1 0.05
3 3 0.14
5 10 0.40
10 45 0.90
15 105 0.995

The problem with tests of factors including more than 2 levels was solved by the 
outstanding statistician and evolutionary biologist Ronald Fisher in the 1930ies. Fisher 
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started with a number of samples and proposed the H0 that µ1 = µ2 =µi = ...=µa (Fig. 2). If 
H0 is false the means are different, e.g. due to an experimental treatment effect A1, A2, 
Ai...Aa (Fig. 2). To remove any effect of the sign of these treatments they can be squared 
and H0 can be re-formulated to state that:

  H0 = Ai
2

i=1

a

∑ = 0

and the alternative hypothesis of an effect from the treatments is:

  HA = Ai
2

i=1

a

∑ > 0

Fig. 2.  Schematic drawing of population distributions and treatment effects (A) when H0 is true 

(left) and false (right), respectively.

A really smart feature of formulating H0 in this way is that the test is one-sided. Any 

alternative hypothesis will make 

€ 

Ai
2∑ larger than for H0. The trick is now to understand 

how 

€ 

Ai
2∑  can be estimated from a number of samples and how we know when this sum 

of treatment effects are sufficiently high to reject H0. In Part 2 the concept of a linear 
model was introduced. We can write a linear model to account for all the variation among 
and within samples as:

 Xij = µ + Ai + eij

As before Xij is the particular value of object j in treatment i and µ is the true mean, Ai are 
the different levels of treatment effects, and eij are the deviations of each individual 
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observation (measurement) not explained by the mean or the treatment effect. Fig 3 shows 
how the total variation within and among samples can be partitioned into three different 
parts by measuring the variation as the Sum of Squared deviations (SS). 

Fig. 3.  Drawing showing the construction of the different Sums of Squares (SS), see text below.

We can walk through Fig. 3 in steps:
1. Fig. 3A illustrates the total variation measured as the SS between each observation 

and the overall mean (

€ 

X ). The SS is calculated as Xij − X( )2
i=1

a

∑
j=1

n

∑ .

2. The total variation can be partitioned into two parts. Fig. 3B shows the variation of 
each observation (the circles in Fig. 3) to the means (

€ 

X i ) of the two levels of Factor 
A. This variation is called the residual SS (SSResidual) and is calculated as 

Xij − Xi( )2
i=1

a

∑
j=1

n

∑ . The SSResidual represents the variation that is not explained by the 

factor A. 
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3. The second contribution to the total variation is shown in Fig. 3C and is the part 
explained by the factor A. The SStreatment for factor A is calculated as 

n Xi − X( )2
i=1

a

∑ . Note that the SStreatment for factor A is multiplied by the sample size 

n. Why? One simple explanation is that each SS should consist of the same number 
of deviations to be able to compare them. For each factor level the deviation 

(Xi − X)2 should be taken for each observation and then summed to get the 

SStreatment. Of course there will then be n identical (Xi − X)2  so we can write the 

sum as   n* Σ(Xi − X)2 . That this really makes statistical sense can be seen if we 

think about what the different SS estimate. If we assume that the factor A has no 
effect (no treatment effect) and H0 is true then ΣAi2 is expected to be 0. This is the 
case in Fig. 3D. SStreatment for factor A will still be different from 0 in a given sample 
due to non-representativity and this variation is caused by the fact that the 
individual observations differ. What the SStreatment really estimates is the variation of 
the mean for all individual observations. Remember the Central Limit Theorem and 
that the variance of a mean is s2/n, i.e. the sample variance divided by sample size. 

So if Σ(

€ 

X i − X )2 is multiplied by n (sample size) and there is no effect of Factor A 
the SS in Fig 3D should estimate the same variation as the SSresidual. This is exactly 
what we want SStreatment for factor A to do, i.e. when there is no effect of factor A its 
SS only estimates the SSresidual.

The final step is to construct a table for our one-factor ANOVA. We did this already in 
Part 2 for the regression analysis and the table for the 1-factor ANOVA is very similar. 
Table 2 shows how we collect our information about our attempt to partition the 
variation. 

Table 2. One-factor analysis of variance.

Source of variation SS df MS MS estimates

Factor A 

€ 

n X i − X( )
2

i=1

a

∑  a-1 

€ 

SStreatment
(a −1)

 σ2e + 

€ 

n Ai
2∑

(a −1)

Residual (within groups) 

€ 

Xij − X i( )
2

i=1

a

∑
j=1

n

∑  an-a 

€ 

SSresidual
(an − n)

 σ2e

Total 

€ 

Xij − X( )
2

i=1

a

∑
j=1

n

∑  an-1 

€ 

SStotal
(an −1)
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The first column has the different sources of variation we already recognize from the linear 

model and Fig. 3. The second column shows the SS. Note again that the ΣΣ(Xi − X)2  for 

SStreatment can be written as n* Σ (Xi − X)2 . 

Next step is to form a measure of variation that is independent of sample size. Note that the 
SS will increase as we increase the sample size of an experiment; when n increases so do 
the number of squared deviations. This is of course unfortunate because we want to obtain 
a statistic that is general across all types of studies regardless of the size of an experiment. 
To achieve this the SS  are divided by the degrees of freedom (df) in the third column. We 
then get what is called mean squares (MS) and are shown in the fourth column. A MS is 
similar to a variance since we divide a SS with the number of independent deviations, i.e. 
df. As before the number of df is found as the number of squared deviations minus the 
number of parameters (means) we need for the squared deviations. For example for a 
factor with a levels, the SStreatment consists of a deviations and we need to calculate the 
overall mean so this gives a-1 df, and the SSresidual has a*n deviations and we need a means 
of the different factor levels giving a df of a*n-a. The final step (often the most tricky!) is 
to find out what the different MS estimate, this is written in the fifth column. MS is similar 
to a variance, but we will see that an MS may estimate the sum of many variances. As 
shown in Fig. 3D the SStreatment and MStreatment will under H0, of no treatment effect, estimate 
the same variation as SSresidual and MSresidual.

We are now ready to find a statistical test for a possible effect of factor A. As is seen in 
Table 2 the MStreatment will estimate the same variance as the MSresidual if H0 is true, i.e. if 
there is no treatment effect from our manipulation of factor A. As you may guess the 
proper statistic to test this H0 is the F-ratio, where F = MStreatment / MSresidual. Under H0 the 
expected F is close to 1, and for alternative hypotheses F will increase. The distribution of 
F under H0 depends on the df both for the MS in the numerator and the denominator. The 
critical F for rejection of H0 may be found in statistical tables (or as a formula in Excel).

Assumptions for ANOVA

1. Samples come from normal distributions. As pointed out before the probability of an 
F-ratio will only be exactly valid if samples come from a normal distribution. But this 
assumption is not very critical for ANOVA because we compare means and due to the 
Central Limit Theorem these are almost always close to normally distributed. In fact, 
ANOVA is very robust (not sensitive) even when the true populations are far from 
normally distributed. 

2. Variances are homogeneous (homoscedasticity). We have already said that this 
assumption is more important than the assumption about normal distributions for most 
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parametric techniques. Especially, if one or a few variances are much larger than in the 
other groups this may have serious effects on the type I error. Usually, heterogeneous 
variances lead to an excessive type I error and we will reject H0 more often than our 
calculated probability indicates. Before performing an ANOVA we need to inspect the 
data to identify suspect measurements, and will also formally test the H0 that variances 
are coming from the same distribution, i.e. they are homogeneous. There are many 
tests but we recommend Cochran’s test where the C-statistic is easy to calculate:

   C =
max si

2( )
si
2∑

where si2 are the variances of all the treatment groups and max represents the largest of 
the variances. The probability distribution of C can be found in statistical tables and the 
C-statistic depends on the number of variances compared and the df of each variance 
(n-1). An example is where the factor A has 4 levels with 5 replicate observations for 
each level, i.e. sample size is 5. The variances are 5.3, 6.4, 7.8 and 15. The sum of 
these variances are 34.5 and the maximum variance is 15 so the statistic C is 0.43 with 
4 variances and 4 df. A table shows that the critical value to reject H0 of homogeneous 
variances in this case is 0.63 so with our lower value of 0.43 we consider the variances 
homogeneous and we can proceed with the ANOVA. 

3. Independent observations. As before it is of paramount importance that our 
observations, or replicates, are independently sampled. Failure to meet this 
assumptions have unpredictable consequences and any statistical analysis will be 
compromised. This is probably the most common error in scientific studies. Here are 
some examples of when observations are not independent:
i) Within a level: Crabs within the same aquarium stimulate each other to release a 
pheromone, which leads to a decrease in the variation among crabs.
ii) Between levels: In a field experiment plots are prepared by removing all grazers. 
Some randomly selected plots are assigned as controls and grazers are returned. 
Unfortunately, the plots with and without grazers are too close so many of the grazers 
migrating into the empty plots come from the control plots. Clearly, the observations 
between treatments are not independent and in this case the effect of grazing will be 
underestimated.

4. Balanced samples. The final assumption is that, as far as possible, any study should be 
what is called balanced. This means that there should be an equal number of 
observations or replicates in all samples or groups. Unbalanced designs may lead to 
several errors, especially when we extend our ANOVAs to include more than one 
factor (see below). Equally important is that balanced designs are more robust against 
heterogeneous variances and non-normality. Although we plan a balanced design we 
may lose observations, e.g. an organism died or we dropped a test tube. Possible 
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solutions may include that we randomly remove an observation from the other groups 
to maintain the balanced design. We may then compare the analysis of the reduced but 
balanced data set to an analysis of the unbalanced data set. If conclusions are different 
it may be necessary to seek statistical expertise. If there are very few replicates in each 
group the removal of observations may lead to an increased type II error. We may here 
replace the missing observation by the mean in that group, and in the final analysis 
remove one degree of freedom in the denominator of the F-test.

Multiple comparisons or a posteriori tests

An ANOVA is rarely the endpoint for our test of hypotheses. As we have seen, the 
ANOVA only tests the general hypothesis that a factor explains a significant part of the 
variation observed. The ANOVA does not tell anything about what levels in a factor are 
responsible for the treatment effect. For example, a compound extracted from a sponge is 
suspected to inhibit settlement of fouling organisms, e.g barnacles. Barnacle larvae are 
added to four concentrations of the compound and one control, and the proportions of 
settled larvae in 6 replicate dishes are recorded (there are 20 larvae per dish). In a one-
factor ANOVA we get a sufficiently large F to reject the H0 of no effect. The hypothesis 
that the compound has an antifouling effect is supported. However, the ANOVA says 
nothing about which of the concentrations had an effect. If there are more specific 
hypotheses about the different levels in a factor this requires more detailed tests. These 
tests are called multicomparison tests, and one type is called a posteriori tests. They are 
related to pairwise t-tests but include some insurance against the excessive type I error that 
we saw in Table 1. A multicomparison test is only done if the ANOVA rejects the H0.  
There are several multicomparison tests and one commonly used is the Student-Newman-
Keuls test (SNK). Briefly, this test starts with the ranking of all group means, i.e. the 
means of all levels. First a SE is calculated from the MS in the denominator in the F-ratio 
(often termed MSerror) as:

     SE =
MSerror
n

where n is the number of replicates in each group. This SE has the same df as the MSerror. 
Secondly, we begin to test the means being most different (H0 of no difference) with the 
statistic Q as:

  Q =
Xi − X j

SE
The distribution of Q (or critical values of the distribution) under H0 can be found in 
statistical tables where Q depends on the number of means between the tested pair of 
means and the df of SE. In the ANOVA of the test of our sponge compound we got an 
F4,25=MStreatment / MSresidual=4755/100=47.5. This F is  much larger than the critical 2.6 and 
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we reject H0. We then proceed with an SNK-test of the means. The 5 means are ranked as: 
70%, 60%, 45%, 15% and 5% so we start to test 70% against 5% which has a “distance” of 

5 means. The SE is 

€ 

100 /6 = 4.08 , and the Q=(70-5)/4.08=16.9. The critical Q with 
α=0.05 with 25 df and a distance of 5 means is found in a table as 4.17. Our Q of 16.9 
clearly exceeds this and we consider the means 70 and 5% as significantly different. We 
then proceed with the next greatest difference in means, here 60 and 5% or 70 and 15%. 
When a difference is not found to be significantly different we stop our multicomparison. 
The idea with this procedure is to perform a minimum of comparisons to minimize the type 
I error. There is an alternative way to a posteriori multicomparison tests called a priori 
tests. Read more about this on page 20. 

ANOVA hierarchical factors - Nested ANOVA 

We will now begin to include more than one factor in an ANOVA and we start with what is 
called nested (or hierarchical factors). To illustrate the logic behind a nested ANOVA we 
start with an example. We want to investigate if the number of grazers (e.g. the isopod 
Idotea viridis) on bladder wrack (Fucus vesiculosus) differs between sheltered and wave 
exposed shores. First we identify possible exposed and sheltered sites and randomly select 
two of each. At these sites we sample a total of 20 plants according to the map in Fig. 4. 
Table 3 shows the results of the study with all the means.

Fig. 4.  Map showing the location of 20 samples of bladder wrack from sheltered and exposed 

sites.
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Table 3. Number of isopods on bladder wrack for 20 plants sampled from both exposed and 

sheltered shores. 

Exposed 1 Exposed 2 Sheltered 1 Sheltered 2
10 15 27 38
23 38 18 49
45 18 35 53
12 25 19 37
21 20 24 48

€ 

XE1=22.2

€ 

XE 2=23.2

€ 

X S1=24.6

€ 

X S2=45

€ 

XE=22.7

€ 

X S=34.8

€ 

X total=28.7
 
We first analyze this data set according to a one-factor ANOVA with Exposure as the factor 
with two levels (exposed/sheltered). Table 4 shows the result of the ANOVA with an F-
ratio for 1 and 18 df equal to 5.2 and we reject the H0 of no difference and conclude that 
grazers indeed differ between exposed and sheltered sites. However, there is something 
wrong with this analysis. It is clear from the map in Fig. 4 that the 20 sampled plants

Table 4. Results of ANOVA of the number of isopod grazers present on bladder wrack at exposed 

and sheltered sites.

Source of Variation SS df MS F P-value
Exposure 732 1 732 F1,18=5.2 0.035
Residual 2535 18 141
Total 3267 19

are not independent. They appear in groups of 5 and all the 10 plants representing exposed 
and sheltered shores were not randomly distributed. For the test of the main hypothesis that 
there is a difference between exposed and sheltered shores there are only 2 independent 
replicates, E1 and E2 for the exposed level and S1 and S2 for the sheltered level. 

A possible way to correct this mistake would be to calculate the means for each of the 4 
sites. Now the ANOVA will look like in Table 5. Note that the degrees of freedom for the 
F-test decreased dramatically reflecting that we only have 2 independent replicates. 
Accordingly, the probability of H0 being true is high and in contrast to the ANOVA in 
Table 4 we retain H0.
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Table 5. ANOVA of the same data as in Table 4 but now each site is represented by an independent 

mean.

Source of Variation SS df MS F P-value
Exposure 146 1 146 F1,2=1.4 0.36
Residual 209 2 104
Total 355 3

There is, however, another way of analyzing the data collected as in Fig. 4. We can 
explicitly include the spatial dependence of the 5 plants sampled at each site. We do this by  
adding a second factor, Site, to our linear model:

Xijk  =  µ + Exposurei + Site (Exposure)j(i) + eijk

To indicate that Site is nested under Exposure we use brackets: Site(Exposure). The logic 
behind nested factors is a bit difficult to see at first but be patient! If we look at  the map 
again in Fig. 5 we now think like this: there are two 

Fig 5. A map of the same samples as in Fig. 4 but where the grouping in Factor Site is shown.

randomly selected Sites for each level of Exposure (exposed/sheltered). Each level of the 
factor Site only represents a different place. And each level of Site is found only under one 
level of Exposure, i.e. the factor Site is nested under the factor Exposure. Under the factor 
Site there are 5 plants in each level. The ANOVA of this nested design will look like in 
Table 6. The numbers are partially the same as in the naïve ANOVA in Table 4, but the 
SSResidual in Table 4 is now partitioned between the nested factor Site and a new SSResidual. 
The SSSite of course contains the variation explained by being at different sites regardless of 
exposure. The important thing to notice in Table 6 is that the relevant F-test for the H0 that 

Statistics & experimental design – Part 3 

12

E

E

S

S

Site 3

Site 1

Site 4

Site 2



Exposure does not have an effect is MSExposure / MSSite. We easily see this when we look at 
what the MS estimates in Table 6. For the test for Exposure we should identify a 
denominator MS (also called error term) that contains all the variance components except 
the one we are testing. Clearly, MSSite is here the correct error term. We also see by  testing 
Exposure over the nested factor Site that we get the same F=1.4 as when we tested only the 
means in Table 5.

Table 6. ANOVA of the same data as in Table 4 but analyzed according to a nested ANOVA design. 

Note that the A and B after the factors are just to make the notation of what MS estimates shorter.

Source of Variation SS df MS F MS estimates   P

Exposure (A)
 732
 1
 732
 1.4
 σ2e  + nσ2B(A) +  

€ 

nb Ai
2∑

a −1

 0.35

Site (Exposure) (B)
 1043
 2
 521
 5.6
 σ2e  + nσ2B(A)
 0.014
Residual
 1492
 16
 93
 
 σ2e
Total
 3267
 19

But we also get some more information. We see that we have to reject the H0 for factor Site 
and there are clearly differences among sites that are not explained by exposure. It was 
really this effect we incorrectly interpreted as an effect of exposure in Table 4. By 
including nested factors in this hierarchical way we can gain valuable information about 
variation in the system we study. With the information in Table 6 it is, e.g. possible to 
calculate the optimum compromise between number of sites visited and the number of 
plants analyzed (see below).

The next example of a nested ANOVA is about a manipulative experiment where we want 
to test the model that growth rate of a fish depends on the type of diet. The experiment is 
designed with 3 aquaria receiving Diet 1 and 3 aquaria with Diet 2. In each aquarium there 
are 5 fish which are measured before and after the experiment. The dependent variable that 
we will analyze using an ANOVA is the weight increase. The H0 is that there is no 
difference in weight increase between Diet 1 and 2. The variation in weight increase is 
analyzed according to the linear model:
             Xijk = µ + Dieti + Aquarium(Diet)j(i) + eijk
The linear model shows that we now have learnt about nested factors and realized that the 
5 individual fish in each aquarium are dependent observations; the independent 
experimental units are the aquaria. To represent the actual design in the ANOVA we 
identify the factor Diet and the factor Aquarium(Diet) nested under Diet. The correct 
ANOVA is schematically shown in Table 7. Again we see that the correct F-test for the
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Table 7. ANOVA of two factors where one (Aquarium) is nested under the other (Diet).

Source of Variation SS df MS F MS estimates   

Diet
 
 a-1
 
 σ2e + nσ2B(A) +  

€ 

nb Ai
2∑

a −1
Aquarium(Diet)
 
 ab-a
 
 σ2e  + nσ2B(A)
Residual
 
 abn-ab
 
 σ2e
Total
 
 abn-1

factor Diet is formed by F=MSDiet / MSAquarium. A significant effect of Aquarium means that 
different aquaria, for some reason, resulted in different growth rates despite receiving the 
same diet. Maybe some aquaria were placed closer to the door in the constant temperature 
room and were disturbed more severely when people walked in and out. Or maybe the fish 
were not randomly distributed among the aquaria. If the fish were caught in a trap net from 
a storage tank and aquaria were filled one by one it is likely that the first few aquaria 
received the slowest and perhaps inferior individuals (how could this be avoided?).

In Figure 6 the logic behind nested ANOVA is shown in graphic form. It is very, very 
common that scientific studies contain designs where observations are dependent without 
including this in the statistical analysis. This has the effect that the test of H0 has too many 
df and a type I error is committed (as seen in Table 4). The problem is particularly common 
when samples are collected from different localities in the field (as in our example above) 
or when the experimental units are big. Many experiments feature large containers that can 
hold many m3 of water, so called mesocosms. It is easy to forget that these are still the 
independent experimental unit. In too many studies there is just one mesocosm for each 
treatment level, and then a number of dependent samples from each mesocosm. All that is 
logically tested in such a design is if two containers differ in some aspect, and often they 
do. However it is illogical to conclude that this is linked to the treatment. Instead, at least 
two mesocosms per treatment level are required and the dependent samples are included as 
a nested factor.

Pooling of nested effects

If the factor Site in Table 6 had turned out to be non-significant this would have indicated 
that there was no large difference among the different sites. Many statisticians (but not all!) 
recommend that it is then possible to view the different plants as independent observations 
to estimate the residual variation. Often it is recommended that the probability that H0 is 
true should be greater than 0.25. If this had been the case in Table 6 we can now pool 
together the variation explained by the factor Site and the unexplained variation in the
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Fig. 6.  Schematic drawing of the logic behind nested ANOVA. All possible cases for the tests of the 

two H0 are shown. 

Residual and form a new MSResidual called MSPooled. We do this by adding the SS and divide 
by the sum of the df:

MSPooled = (1492+1043)/(16+2) = 141
The F-ratio is now 5.2 and we arrive at the same test as in Table 4, BUT now we have 
formally tested if sites differ.

Why include nested factors?

There are two major reasons why we decide to include nested factors in our designs. 
1. We may have a limited number of aquaria but instead of adding just one fish per 

aquarium we add several fish that give the opportunity to explore if the 
experimental units (the aquaria) differ much. Much variation among aquaria 
indicates that there is one (or several) unknown factors that affect the experiment. 
Maybe it is possible to identify these and design a stronger experiment.

2. Generally resources (usually time & money) are limited for any study. In the 
experiment above with the analysis of number of grazers on plants of Fucus 
vesiculosus, there is one cost to travel to a new site and one cost to analyze every 
plant. In a nested design it is possible to make a cost-benefit analysis to decide for a 
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given amount of resources what is the optimum number of sites and plants to 
maximize the statistical power. It is possible to show that for the total available 
resources C (e.g money) the optimum number of sites (b) per treatment level and 
the number of plants per site (n) are:

b =
C

Cb + nCn

,n = Cbσ e
2

Cnσ B(A)
2

where Cb is the cost of visiting a new site, Cn is  the cost per plant, σ2B(A) is the 
variation explained by Site and σ2e is the residual variation (between plants within a 
site). If we use the equation above and the MS in Table 6 we can calculate the 

variation nσ2B(A) (a sort of variance) explained by Site by using the MS and what 

they estimate. First the σ2e = 93 and:

 σ2B(A) = (MSSite – MSResidual)/n = 86
Imagine that we now have a total budget of 50000 SEK. To visit a new site costs 
3000 SEK in ship time and to analyze one plant of Fucus costs 1000 SEK in salary 
costs. According to the cost-benefit equation the optimum design is to visit ca 10 
sites for both exposed and sheltered shores and to take 2 Fucus plants at each.

ANOVA with two orthogonal factors

We have in the previous section seen how nested factors can be included in an 
experimental design. The nested factors do not represent anything else than another place 
or another aquarium. The aim is not to study how a certain aquarium may affect the growth 
of a fish; the aim is only to investigate how much of the variation in growth may be 
explained by different aquaria. We can think of the aquaria in an experiment as a sample of 
many possible aquaria. In Part 2 we introduced fixed and random factors and nested factors 
are typically random factors. Note also that each level of the nested factor Aquarium only 
exists in one level of the Diet factor. As we will see below this is an easy way to recognize 
if a factor is nested. Now we will extend ANOVA to include multiple factors where each 
level of one factor exists in each level of another factor. Such factors are called orthogonal 
factors.

Often we have models that include more than one factor and where we are interested to 
know how the effect of one factor A affects another factor B. The only way to test such 
complex effects is to design a scientific study where all combinations of factor A and B are 
included. This is known as a multi-factorial experiment where the factors are orthogonal. 
The word orthogonal just means that in all levels of factor A all levels of factor B are 
present. There are two important aspects of analyzing several factors together in a multi-
factorial ANOVA:
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1. As we will see the statistical power will be much greater than if the factors were 
analyzed one by one.

2. This is essentially the only statistical technique to test hypotheses about interactions 
between factors, i.e. how the effect of one factor affects the effect of another factor. 

As before we start with an example. A model makes the prediction that induction of a 
defence compound in a microalgal species occurs when a grazer is present but only when 
nutrients are scarce. The linear model looks like:

Xijk  =  µ + Gi + Nj + G*Nij + eijk
 The variation in the defence compound is here partitioned due to the two factors Grazer 
and Nutrient and also their possible interaction (G*Nij). As before we, of course, also have 
the unexplained variation between individuals, eijk, not explained by the factors or their 
interactions. In this model we consider both Grazer and Nutrients to be fixed factors 
because Grazer contains the 2 levels absence and presence of grazers, and Nutrients the 3 
levels low, intermediate and high concentration. Would we repeat the experiment we would 
have selected the same levels (see Part 2 for more information about fixed and random 
factors). The result of this experiment with 3 replicates of all factor combinations is shown 
in Fig. 7.

Fig. 7. Result of experiment with two orthogonal factors.

The ANOVA of this multifactorial experiment is seen in Table 8. When we know what 
variance components that MS estimate it is easy to construct the relevant F-ratios. In Table 
8 both factors and the interaction are all tested against MSresidual. Remember that the 
appropriate denominator in an F-ratio the MS that contains all the variance components 
except the one tested.
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Table 8. The general outline of a 2-factor ANOVA with fixed factors.

Source of Variation  df   MS estimates   

Grazer  a-1  σ2e  +  

€ 

nb Ai
2∑

a −1

Nutrient  b-1  σ2e  + 

€ 

na Bi
2∑

b −1

Grazer*Nutrient  (a-1)*(b-1) σ2e +

€ 

n ABij
2∑

(a −1)(b −1)
Residual  ab(n-1)  σ2e
Total  abn-1

Two interesting aspects become apparent with this 2-factor, orthogonal ANOVA: 
1. The increase of the statistical power for the main effects (factors Grazer and 

Nutrient). The F-test for Grazer is formed as MSGrazer / MSResidual, and MSresidual has 
ab(n-1) degrees of freedom, in this example 2*3*2=12. If we had tested Grazer in a 
1-factor ANOVA MSResidual would have had only a(n-1) or 4 df. The reason is of 
course that the test for factor Grazer has b*n replicates for each level.

2. We now can test the interaction between the factors Grazer and Nutrient by 
forming an F-ratio between MSGrazer*Nutrient / MSResidual. 

The possibility to test interactions between factors is the greatest strength of 
multifactorial, orthogonal ANOVAs. Interactions are very common in biological 
systems where complex dynamics and many feedbacks operate. What does a 
significant interaction imply? In Fig. 7 factors Grazer and Nutrient both explain a 
significant amount of the variation in the induction of the defence compound, i.e. we 
reject H0 that there is no treatment effect. However, in Fig. 7 there is no significant 
interaction between Grazer and Nutrient. In other words, the effect of Grazer is the 
same in all levels of Nutrient, and the effect of Nutrient is the same in all levels of 
Grazer. The effect of one factor is independent of the other factor. This is further seen 
as the lines linking the different Nutrient levels are parallel.

Figure 8 shows a different result where there is now a significant interaction. Here we 
clearly see that the effect of our Grazer factor is very dependent on the nutrient level; it 
is only when nutrients are low that the presence of a grazer induces production of the 
compound. Thus, the reality seems more complicated than in Fig. 7, but we now have a 
technique to discover it. In Fig. 9 we see yet another example where there is a very
.

Statistics & experimental design – Part 3 

18



Fig. 8. Result from the 2-factor ANOVA with a significant interaction.

Fig. 9. A 2-factor ANOVA with very strong interaction between the factors.

strong interaction between the 2 factors. In fact, in this example none of the 2 main factors 
are significant (H0 is retained). This illustrates that when there is an interaction it is usually 
not informative to interpret the main factors in isolation. In Fig. 9 this is very clear but 
even in Fig. 8 the statement that the presence of grazers induces the studied compound is 
incomplete because this is not a general result since it depends on the nutrient availability. 
Because of this we always start to test the interaction source of variation in a multi-
factorial ANOVA. If the interaction is significant we probably want to know more about 
how one factor depends on the other. This is usually carried out in a multi-comparison test 
of the different means of the combinations of the factors. In our example we could test for 
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a difference between the means of absence and presence of grazers in each nutrient level, 
and continue with a comparison of the 3 means of nutrient levels when grazers are absent 
and present, respectively. One example of multi-comparison tests that we have already met 
is the a posteriori SNK-test which can be extended to many factors.

Without going into any detail I want to mention that there is an alternative to a posteriori 
multi-comparison tests of means that is very powerful. Not surprisingly, these tests are 
called a priori tests. The major philosophical difference between a priori and a posteriori 
tests is that to make an a priori test you must specify a subset of comparisons you want to 
perform before you carry out the experiment. In the example with the SNK-test above we 
was potentially interested in all possible differences. In contrast, an a priori test is linked to 
specific hypotheses about the means in the experiment, hypotheses that we have stated 
before the experiment is actually done. An example in the 2-factor ANOVA above would 
be that the model we propose to explain the variation of defence compounds predicts that 
an effect of a grazer would only be detected at low nutrient concentrations. Relevant a 
priori comparisons should show the following patterns if our model is to gain any support:
 

€ 

X grazer > 

€ 

X no grazer in low Nutrient and 

€ 

X grazer ≤ 

€ 

X no grazer in high Nutrient

More than 2 orthogonal factors

A further strength of ANOVA is that it can be extended to analyze very complex 
experimental designs and sampling programs. It is possible to mix orthogonal with nested 
factors, and fixed with random factors. An example may be to extend the test of fish 
growth rate in different diets. We could extend this with one more fixed factor, e.g. Sex 
(female/male) and the random factor Temperature with 3 randomly selected levels between 
10 and 20°. If the factors Diet, Sex and Temperature are all orthogonal, i.e. all factor 
combinations are present and that each aquarium represents one such combination we 
arrive at the design and ANOVA in Table 9. It may look a bit frightening, especially to 
understand what the MS really estimate. We need to be absolutely certain what the different 
MS estimate otherwise we cannot form the appropriate F-ratios. This is more complex 
when we mix fixed and random factors, but as we will see there are rules we can apply in 
steps to make this fairly easy. A warning may here be justified: many statistical software 
that analyze ANOVAs with computers do not find the correct F-ratios. Thus it is important

Table 9. The outline of an ANOVA with three orthogonal factors and one nested. Diet and Sex are 

fixed and Temperature and Aquarium are random factors. Table continues on next page.

Source of Variation  df  MS estimates   
Diet
 a-1
 σ2e + σ2D*T + σ2A(D,S,T)+ k2D
Sex
 b-1
 σ2e + σ2S*T + σ2A(D,S,T) + k2S
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Temp.
 c-1
 σ2e  + σ2A(D,S,T) + σ 2T
Diet*Sex
 (a-1)(b-1)
 σ2e + σ 2D*S*T + σ2A(D,S,T) + k2D*S
Diet*Temp. 
 (a-1)(c-1) 
 σ2e + σ 2D*T + σ2A(D,S,T) + σ 2D*T
Sex*Temp.
 (b-1)(c-1) 
 σ2e + σ2A(D,S,T) + σ 2S*T
Diet*Sex*Temp.
 (a-1)(b-1)(c-1) 
σ2e + σ2A(D,S,T) + σ 2D*S*T
Aquarium (Diet, Sex, Temp.) 
 abc(d-1) 
 σ2e + σ2A(D,S,T)
Residual
 abcd(n-1) 
 σ2e
Total
 abcdn-1

that we learn how to find the correct F-ratios and this will be our next task. 

General method to determine the variance components estimated by MS

We will now walk through a step-wise method to find the variance components that MS 
estimates.

Table 10. Protocol to find the variance components estimated by each MS.

Variance component Residual ABC BCBC AC AB C B A
Type of factor r f f
Source of variation
A 1 - 1 - 1

B 1 - 11 - 1

C 1 - -- - 1

AB 1 1 1

AC 1 - 1

BC 1 - 11

ABC 1 1

Residual 1

1. Start to make a protocol as shown in Table 10. Adjust to the number of factors. We 
will begin with a 3-factor ANOVA where all factors are orthogonal and where A 
and B are fixed factors and C is a random factor.

2. Label the factors as fixed (with an f) or random (with an r) in the second row below 
the variance components.

3. Next, check which factors are nested and under what factors they are nested. 
Nested factors are indicated in the top row by setting the factor under which it is 
nested within brackets. If C is nested under A, C is everywhere written as C(A). Is 
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C nested under both A and B this is then indicated as C(AB). A nested example is 
shown below.

4. Now, all sources of variation (MS) should contain the Residual variation. Indicate 
this with a “1” in the column for Residual.

5. All sources of variation (MS) contain its own variance component. Also indicate 
this with a “1” in the appropriate column.

6. Next step is to decide if any other variance components should be included. We 
start with factor A. We begin by making a small mark (e.g. a dash) for all those 
components that contain factor A. Clearly, these are AB, AC and ABC.

7. For each of the selected sources of variation in point 6 above, we cover over the 
target factor (here A) and look at the other factors. If any of the factors not covered 
(B in AB, C in AC and BC in ABC) is fixed this component should not be included. 
In contrast, if all of the other factors are random this component is included in the 
MS and you mark this with a “1” in that column. In our example, we should mark 
AC.
If one of the factors is nested only look at factors outside the brackets, e.g. if C(A) 
is nested under A and we have identified BC(A) as a potential component, it should 
be included if B is random but not if B is fixed.

8. Now we are finished! Look at all the “1” in the columns and you can write out the 
variance components that each MS estimates. Finally, try to match the appropriate 
Mean Squares to form F-ratios for the different sources of variation. For example 
the F-ratio for testing factor A is MSA / MSAC.

We will take one more example where the third factor C is nested under the fixed factor A, 
i.e. C(A) and where B is a random factor. Table 11 shows the result of applying the rules 
above. Did you get the same result? Since we included a nested factor C(A) under A some 
of the interactions disappeared. It is not possible to have an interaction between a nested 
factor and the factor it is nested under. C(A) after all means that one level (e.g. one 
aquarium) only receives one level of A and this makes it impossible to estimate an 
interaction. Also note one important thing in Table 11. It is not possible to find an 
appropriate F-ratio for the test of factor A. There is no MS that lacks the component for A 
but includes all other components present in MSA. This is often the case when several 
factors are included in an design and some factors are random. This makes it very 
important to check before the experiment is carried out that the relevant tests in a given 
design really exist. If this is not the case we perhaps must re-design the study. This takes 
some skill and comes with experience.  
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Table 11. Protocol to find the variance components estimated by each MS.

Variance component Residual BC(A)BC(A) AB C(A) B A
Type of factor r r f
Source of variation
A 1 11 1 1 1

B 1 11 - 1

C(A) 1 11 1

AB 1 11 1

BC(A) 1 11

Residual 1

Design of sample programs and experiments

This module of experimental design and statistical analysis aims to integrate the 
formulation of models and hypotheses with the design of sampling programs and 
experiments together within a common statistical framework. This process requires that 
there are logic links between hypothesis, the design of an experiment to test the hypothesis, 
and the final conclusion. Here follows some important advice how to design and analyze a 
scientific study

1. Careful planning in advance is essential. This makes it possible to optimize the 
design and check that it has the ability to answer the relevant questions. 

2. Make sure that there is a clear research model predicting one or several hypotheses. 
Often this involves the identification of possible explanatory factors.

3. Specify the generality of the hypothesis. Should it apply to a specific geographic 
area, a specific time of the year, a specific range of temperatures etc?

4. Identify the independent replication unit. Is it the aquarium or the fish in the 
aquarium? Watch out for dependent replicates, especially when the true replication 
unit is large, or when repeated measurements are collected from each individual.

5. It is important to include appropriate controls, e.g. procedure controls. An example 
is a transplantation experiment where plants are moved from area A to area B and 
from B to A, e.g. to test a model that size depends on the local conditions and not 
on genotype. Here it is important to include the procedural controls where plants 
are collected at A and then returned to A and the same for B. This controls for any 
handling effect. Possibly, we would also include an untouched control without any 
handling. The neglect to include necessary controls is common and may lead to 
wrong conclusions where a significant effect of a studied treatment (factor) is 
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actually caused by other aspects of the manipulation. This is called confounding 
and prevents logic conclusions about factor effects. This is so important that we 
will take another example. A model states that the reproduction of a  macroalgal 
species is limited because of grazing  on reproductive tissue by snails. On randomly  
selected plots we remove snails and put net cages around the algae to prevent snails 
from entering the plots. Other plots are used as untouched controls. Our hypothesis 
is that plants should have more reproductive tissue within the cages where there are 
no grazing snails. The results of the experiment indeed support this hypothesis. 
However, something is missing, what? It turns out that a colleague repeats the 
experiment but she also includes the necessary procedural control, i.e. cages with 
some openings to allow access from the snails. This control serves to “unconfound” 
any effect of grazing from the use of cages. And indeed our colleague finds that the 
increase of reproductive tissue within the cages also occurred in cages where snails 
could enter. A new model now suggests that wave exposure may limit fecundity 
and that the cages offered protection from mechanical breakage.

6. Formulate a statistical linear model and identify fixed and random factors. Is any 
factor nested under another?

7. Write down an ANOVA table and find the variance components that the MS 
estimate. Is it possible to find F-ratios for all the tests you are interested in? If not 
the experiment may have to be re-designed.

8. Draw graphs of how experimental results or observations should appear to support 
the tested research hypothesis. This may suggest a series of a priori comparisons 
that can be applied for a targeted test of specific hypotheses.

9. Look at the number of degrees of freedom for the tests important to reject or 
support the research model. Few degrees of freedom, especially in the denominator 
strongly suggest that the test has low statistical power and that there is a big risk for 
a type II error. Even better is to perform a power analysis before the experiment to 
estimate how many degrees of freedom are needed to detect a specified treatment 
effect. This requires some information about the size of the MS in the denominator 
of the relevant F-ratio (see next section about power analysis)

We are all eager to begin the practical parts of any scientific study. However, it cannot be 
stressed enough that it is extremely important to go through all the points above before 
setting up experiments or a sampling program. Lack of necessary controls or missing F-
ratios for essential tests are often revealed at this planning stage.

The formulation of an ANOVA model beforehand also makes it more obvious how the 
design may change the logic conclusions of the experiment. For example, if a geographic 
factor Site is a random factor any conclusions about this factor will be more general than if 
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it is considered as fixed, but the price to pay is often reduced statistical power caused by 
less degrees of freedom. Planning carefully allows for good guesses of statistical power 
and cost-benefit analyses to check that the desired goal can be reached with available 
money and time. Often it becomes obvious that the original design is too ambitious and 
that it will be impossible to detect the treatment effects necessary to test the model. Maybe 
it is instead possible to test a more specific model that can be tested with greater statistical 
power to the price of less generality (e.g. fewer species or a limited geographic range).

Fig. 10.  Schematic outline of field experiment testing effects of predation and competition at three 
sites. P=1 or 0 indicate presence or absence of predators (manipulated with scarecrows), and A is 
L. littorea only and A+B is L. littorea with L. saxatilis added. 

It takes time to learn how to design logical and efficient experiments. The best way is to 
practice using real problems. We will next look at three similar field experiments but where 
the details of the design differs with important implications for the conclusions drawn. The 
Figs. 10, 11 and 12 shows the outline of field experiments designed to test hypotheses that 
explain the variation in survival rate of the common periwinkle (Littorina littorea). The 
factors included are in all three cases Predation (from birds), Competition (from Littorina 
saxatilis) and Site. A number of experimental plots are prepared to allow the manipulation 
of the factors Predation and Competition. However, the way these plots receive the 
different treatments differ strongly among the experiments.

In Fig. 10 Site is a fixed factor and it represents three islands that are all selected for a 
Marine Protected Area (MPA) where the knowledge gained from this and other 
experiments will form an important part of the management of the MPA. The fixed factors 
Predation and Competition are both orthogonal to each other and to Site. All plots are 

Statistics & experimental design – Part 3 

25

A

A

A

A

A+B A+B

A+B

A+B
P=0

P=0

P=0

P=0

P=1

P=1P=1

P=1

S1 S2

S3

A

A

A+B

A+B

A+B
P=0

A+B
P=0

A
P=0

P=0

P=1

P=1

A
P=1

P=1

A

A

A

A+B A+B

A+B
P=0

P=0

P=0

P=0

A+B
P=1

A
P=1

P=1

P=1



completely randomized in each Site. There are two independent replicates for each factor 
combination. The linear model is:

Xijkl  =  µ + Pi + Cj + Sk + P*Cij + P*Sik + C*Sjk + P*C*Sijk + eijkl

By using the rules of finding the variance components estimated by each MS we can write 
down the ANOVA in Table 12 (try for yourself).

Table 12. ANOVA of the design shown in Fig. 10.

Source of variation
 df
 MS estimates
Predation
 1
 σ2e + k2P 
Competition
 1
 σ2e + k2C

Site
 2
 σ2e + k2S 

P*C
 1
 σ2e + k2P*C 
P*S
 2
 σ2e + k2P*S 

C*S
 2
 σ2e + k2C*S 

P*C*S
 2
 σ2e + k2P*C*S

Residual
 12
 σ2e
Total
 23

In Fig. 11 the factor Site represents something else. Here Site is a random factor sampled 
among many possible sites within the geographic area where we want our conclusions to 
apply. At every level of Site there are two plots receiving one level of the Predation factor 
and one level of the Competition factor. Each level of Site contains only one level of the 
other factors and consequently Site is nested under both Predation and Competition 
(compare the case with aquaria and fish above). The independent experimental unit is each 
Site and the two plots within a site are dependent and can only be used to test if different 
sites differ. The design in Fig. 11 is common when an increase in generality is desired. Any 
conclusions about Predation and Competition can now be logically applied to the whole 
geographic area from where the different sites were sampled. The linear model is here:

Xijkl  =  µ + Pi + Cj + S(P, C)k(ij) + P*Cij + eijkl
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Fig. 11. Schematic outline of field experiment testing effects of predation and competition at 12 

sites.  Only one combination of Predation and Competition is present at each site. 

Again note that a factor (like Site) that is nested under another factor never can be used to 
estimate their interaction. Thus there are no interaction terms including Site. Table 13 
shows the ANOVA and the variance components estimated by the MS.

Table 13. ANOVA of the design shown in Fig. 11.

Source of variation df MS estimates
Predation  1  σ2e + σ2S(P,C) +k2P 
Competition  1  σ2e + σ 2S(P,C)  +k2C 
P*C  1  σ2e + σ 2S(P,C) + k2P*C 
Site (P, C)  8  σ2e + σ2S(P,C) 
Residual  12  σ2e
Total  23

Table 13 shows that the price for the increased generality in space by making Site a random 
factor is that the tests of the factors Predation and Competition now only have 1 over 8 
degrees of freedom.

Figure 12 shows an even more intricate design. Also in this design Site is a random factor 
and only represents a sample of different  places. As in Fig. 11 there is only one level of 
Competition in each level of Site, so Site is nested under Competition. However, Site is 
orthogonal to Predation where both levels are present at each level. This design may be 
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preferred if there is a lot of work to manipulate plots with only L. littorea (A) and both L. 
littorea and L. saxatilis (A+B). The linear model that describes this design is:

Fig. 12. Schematic outline of field experiment testing effects of predation and competition at 6 sites. 
Each site contains all levels of Predation but only one level of Competition.

Xijkl  =  µ + Pi + Cj + S(C)k(j) + P*Cij + P*S(C)ik(j) +  eijkl
Table 14 shows the ANOVA and the variance components estimated by MS. In Fig. 12 it is 
sufficient to manipulate the factor Competition in six plots. Note, however,  that there is a 
high price to pay because the number of independent experimental units is reduced to only 
six. It is evident in Table 14 that the test of Competition now only involves 1 over 4 
degrees of freedom, a weak test indeed.  Compare this with the design in Fig. 10 where this 
test has 1 over 12 df. Since Site is orthogonal to Predation in Fig. 12 it is now possible to 
test the interaction between Predation and Site.

Table 14. ANOVA of the design shown in Fig. 12.

Source of variation df MS estimates
Predation 1
 
 σ2e + σ2P*S(C) + k2P
Competition 1
 
 σ2e +σ2S(C) + k2C 
Site(C) 4
 
 σ2e + σ2S(C) 
P*C 1
 
 σ2e + σ2P*S(C) + k2P*C 
P*S(C) 4
 
 σ2e + σ2P*S(C)
Residual 12
 
 σ2e
Total 23
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These three examples show how the design is connected to the analysis, statistical power, 
and to the logic conclusions that can be drawn.

Analysis of statistical power

In Part 1 we carefully went through the risks of type I and type II errors, and we introduced 
the concept of statistical power as the probability of rejecting H0 when H0 is indeed false. 
In other words, it indicates the probability to discover an effect, e.g., in an experiment, 
when there really is an effect. An important part in the testing of research models is to 
estimate the power of the statistical tests used. Imagine that an ecologically significant 
effect of predation is at least a 20% reduction in the prey population. An experiment 
designed to test for such an effect is a waste of time if it is not sufficiently powerful to 
detect a 20% reduction. Each time we cannot reject H0 we should consider the statistical 
power of the test. As already mentioned a power analysis is valuable when we plan an 
experiment or sampling program. It is then possible in advance to estimate the number of 
replicates or observations required for the effect size we want to detect. We will end Part 3 
with an example of a power analysis.

The objective of a field study is to test the model that sewage treatment plants removing 
only nitrogen cause higher local biomass of filamentous algae than treatment plants that 
remove both nitrogen and phosphorous which are expected to be close to the biomass 
found in non-polluted controls. The requirement (maybe from our client) is that we can 
detect a change in biomass of 10 g dry weight per m2 compared to an untreated control 
area. We have access to a small pilot study (sample size=3) that gave the results shown in 
Table 15. 

Table 15. Biomass of filamentous algae (g dry weight m-2)
Control Removal of P Removal of P + N

10 35 19
20 18 8
15 28 25

€ 

X i 15 27 17.3

s2 25 73 74.3

We now first begin to calculate the MSResidual that estimates σ2e:

 MSresidual =
Xij − Xi( )2∑∑

a(n −1)
= 57.4

The residual MS represents the background “noise” of unexplained variation and this 
determines how strong the treatment effect, the “signal”, must be for us to detect it. The 
power of a test is a function of something called φ (phi) which is calculated as:   
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φ =
n A2∑
aMSresidual

with a(n-1) degrees of freedom

where n is the number of replicates per treatment, a is the number of treatments (levels) 
and ΣA2 is a measure of the treatment effect [ΣA2=Σ(Ai-

€ 

X )2]. If we want to discover an 
improvement of 10 g dry weight per m2 we may imagine a scenario with P-removal 25, 
NP-removal 15 and control=15 g dry weight per m2. The summed treatment effect, A2 is 
here 67. Statistical power increases with φ and the df, and we can find the power in 
statistical tables. It is obvious that power will increase with n and the effect size, and will 
decrease as MSResidual  increases. Table 16 shows the power for different number of 
replicates. Also note that we have to specify the type I error which here is set to 0.05.

Table 16. Power when a 10 g dry weight m-2 must be detected and with α=0.05.

Number of replicates Φ df PowerPower
2 0.76 33 0.13
3 0.93 66 0.24
4 1.08 99 0.35
5 1.20 1212 0.46
6 1.32 1515 0.56
7 1.42 1818 0.65
8 1.52 2121 0.72
10 1.62 2727 0.83
15 1.71 4242 0.95
20 1.87 5757 0.99

If we instead are satisfied to detect a difference of 15 g dry weight m-2 we get the power in 
Table 17.

Table 17. Same as in Table 16 but where the effect size is 15 g dry weight m-2.

Number of replicates Φ df PowerPower
2 1.14 33 0.23
3 1.40 66 0.48
4 1.62 99 0.68
5 1.81 1212 0.82
6 1.98 1515 0.9
7 2.29 1818 0.95

We can see from this power analysis that in the final study we need 15 replicates to expect 
to find a difference of 10 g dry weight m-2 with a power of 0.95. If it is sufficient to detect 
a difference of 15 g dry  weight m-2 only 7 replicates are needed. In this way the statistical 
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power can be calculated for most sample programs and experimental designs if the desired 
treatment effect and the denominator of the F-ratio (here the MSResidual) are known.
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