
Experimental design and statistics for Marine Ecology

Part 2
STATISTICAL ANALYSIS AND DESIGN OF ECOLOGICAL EXPERIMENTS  

-  STATISTICAL MODELS AND REGRESSION

Linear statistical models 

After the introduction in Part 1 about distributions, tests of hypotheses and statistical 
errors, this Part 2 will introduce a few more concepts that will be helpful in Part 3 about 
analysis of variance.

We start with an example recycling the mussels in Part 1. Mussels are sold at an 
outdoor market place and from the large variability of shell lengths we formulate a 
model that mussels from both the east- and west coast are sold. The frequency 
distribution of the shell lengths in the sample is shown in Fig. 1. 
Fig. 1  Frequency distribution of mussel shell lengths sold at a market.

We can start and look at the total sample (n=146) and calculate the mean, the sum of 
squared deviations, called Sum of Squares (SS), and the variance which is SS/(n-1). 
Sum of squares is calculated as:
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We find that the sample mean (

€ 

X ) is 3.3 cm, SS is 149 cm2 and the sample variance (s2) 
is 1.03 cm2. We can write this as a linear statistical model:

Li = µ + ei

Where Li is the length of each mussel, µ is the overall true mean and ei is the deviation 
(e stands for “error”) from the mean for each mussel. The subscript i=1,2,3...n are labels 
for each individual mussel. We could now extend the linear model in order to explain 
more of the total variation. The research model that the mussels sold at the market are a 
mix from both coasts can be included as a factor in the linear statistical model: 

Lij = µ + Coasti + eij
Where Coast is a factor with two levels, east coast (i=1) and west coast (i=2). The 
subscript j now indicates each individual mussel. The factor Coast potentially gives a 
specific contribution to the mussel length, i.e. the factor Coast potentially explains 
some of the variation in length. We apply a genetic analysis capable of assigning all the 
mussels to one of the two coasts. It turns out that the west- and east-coast mussels in the 
sample have means of 4.0 and 2.6 cm, respectively. In our linear model that determines 
the effect sizes of the factor Coast where Coasti=1 = -0.7 cm and Coasti=2 =+0.7 cm. 
With the means of the two levels of factor Coast we can now calculate a new SS. 
Instead of taking the sum of squared deviations from the total mean we now do it for all 
the east-coast mussels against the mean of east-coast mussels (

€ 

X i=1) and for the west-
coast mussels against the west-coast mean (

€ 

X i=2). The SS for the east coast is 33.4 and 
for the west coast 36.4. This sums up to a SS of 69.8. This means that by including the 
factor Coast we have reduced the unexplained variability from SS=149 to SS=69.8. 
With the factor Coast we now explained (149-69.8)/149=53% of the total SS. In 
principle we can now proceed to elaborate our research model with factors that may 
explain the remaining part of the unexplained variability, i.e. the remaining 69.8 SS. 
One example could be that age explains part of the variability in shell length. 
Determination of the age can be done by counting growth rings in the shell. The linear 
statistical model is now extended to:

Lijk = µ + Coasti + Agej + eijk
It turns out that when the SS is calculated for all mussels to each age mean within each 
coast the remaining SS is now only 23 so we have now explained 85% of the total 
variability with our research model about coastal origin and age. The remaining SS of 
23 is called the residual SS and represents the unexplained variability caused by all the 
unknown factors we have not yet included in our research model. Examples of such 
unknown factors are genotype, food availability temperature etc. This method of 

Statistics & experimental design – Part 2

2



partitioning the variance among hypothesized factors using a statistical linear model is a 
very powerful tool. 

Factors

Let us look closer at the concept of statistical factors. A factor is here a variable that 
potentially explains (and sometimes causes) the variation we observe. A factor has two 
to an infinite number of levels (Table 1).

Table 1. Example of factors and their levels.

Factor Levels
Coast east coast, west coast
Age 1-year, 2-3-year, above 3 years
Temperature 8, 12, 17, 23°

There are two types of statistical factors, fixed factors and random factors. This is a 
difficult concept and needs careful explanation. A fixed factor includes all the relevant 
levels necessary to test a research hypothesis. A random factor only includes a sample 
of all possible levels. Here are some examples of fixed and random factors. We have 
identified Season as a potentially explaining factor for the growth rate of the knotted 
wrack (Ascophyllum nodosum). Our hypothesis is about seasonal effects and we include 
all the seasons: summer, autumn, winter and spring, and the factor is clearly fixed. In 
another study we have a hypothesis about temperature as an important factor to explain 
growth rate in a ciliate species. We know that the normal tolerance range for this ciliate 
is between 5-25°C, and we draw a random sample of 4 temperatures in this range to 
represent the factor Temperature. The levels happened to be 11, 13, 15 and 18°C. If we 
would repeat the experiment we would very likely have another set of levels. The factor 
Temperature is random. A good rule of thumb is to ask the question: Would I choose the 
same levels if I would repeat the study? If the answer is yes the factor is fixed and 
otherwise random. Note that, e.g. Temperature could be a fixed factor in another 
experiment. An example being a test if spawning of cockles is dependent on 
temperature. We include 5, 10, 15 and 20° and these levels represent low, medium, high 
and very high temperatures. If we repeat the experiment we would select the same 
levels and Temperature is a fixed factor. An obvious question is why it is important to 
distinguish between fixed and random factors. We will see later that this has 
consequences for how we statistically test if the proposed factors explain more of the 
variance than specified by H0 of no effect. And equally important, the logical 
conclusions from fixed and random factors will be different. The logical conclusion 

Statistics & experimental design – Part 2

3



from a random factor is more general since it applies to all possible levels, while 
conclusions from a fixed factor only apply to the levels we have selected.

If we look back to our mussel example Coast was obviously fixed. The hypothesis was 
only about Sweden and there are only two coasts on this scale so all possible levels 
were included. We also identified the two coasts because we know that they represent 
known differences of environmental conditions that could explain the difference in shell 
size. With our model we wanted to test if Coast has a treatment effect on shell size. In 
our case we found that west coast mussels were on average 4.0 cm and east coast 
mussels 2.6 cm. The overall mean was 3.3 cm and we can say hat the treatment effect 
caused by Coast was 0.7 cm. If Coast has level east it subtracts 0.7 cm from the overall 
mean, and if Coast is west the factor adds 0.7 cm to the overall mean. This is how fixed 
factors work. How would this example look like if the factor Coast were to be random? 
In this case we can imagine that we have a general idea that mussels from different 
localities (stretches of coast) differ in length. We do not at this stage have any idea why 
they differ so these localities do not represent anything more than different places. 
Randomly, we draw 4 stretches of coast and within each stretch we sample a number of 
mussels. Had we repeated this we would have another set of coastal stretches. The 
factor Coast is here clearly random. The linear model looks the same:

Lij = µ + Coasti + eij
We further assume that Coast explains the same amount of SS as in our fixed factor 
case. The difference between these two cases is how we logically interpret the results. 
As in the case with the fixed factor, the random factor Coast explained 53% of the total 
SS. But it would be meaningless to talk about a treatment effect since there are an 
almost infinite number of coastal stretches that do not represent anything else than that 
they are different places. Instead we say that the random factor Coast explained 53% of 
the variation in mussel length. We do not attempt to link any treatment effect to the 
different levels (coastal stretches). Why do we use random factors? There are two main 
reasons:

1. Increase the generality of our research models. We have a research model that 
states that snails grazing on the bladder wrack (Fucus vesiculosus) induce the 
wrack to produce a chemical compound defending the wrack from further 
grazing. This model is tested in an experiment where the fixed factor Grazing is 
manipulated by the levels presence and absence of snails. We indeed conclude 
from the experiment that the defence compound increases when snails are 
present. However, we only performed the experiment in one place. We now 
want to extend our model to include the whole geographic distribution where the 
wrack and snails co-occur. To do this we include the random factor Place and 
randomly sample 4 localities within the distribution area. The new H0 is now 
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that the induction of the defence compound does not differ among localities, i.e. 
Place does not explain any significant SS of the variation in the induction of 
defence compound. We do not have any hypothesis about the different localities, 
they just represent a sample of different places to allow us to draw a more 
general conclusion, in this case about chemical defence. 

2. A tool to explore patterns of variation. In an early phase of a scientific inquiry 
we usually have little information about factors potentially influencing the 
abundance of a species or a biological process. Before having any specific 
hypotheses about, e.g. factors like temperature, salinity and nutrient levels we 
may explore the more simple hypothesis if these factors explain any significant 
amount of the variation and also the relative magnitude of these. In this example 
we sample the levels for the factors Temperature, Salinity and Nutrients (but 
probably using some criteria, e.g. tolerance limits or commonly occurring 
ranges). We find that the SS explained by these factors are 300, 150, and 10, 
respectively. The residual unexplained SS is 30. This means that of the total SS 
temperature explains 61%, salinity 31% and nutrients only 2%. We can conclude 
that we should now focus on mechanisms that include temperature and salinity, 
probably leading to the identification of fixed factors.

Linear regression

We can further illustrate the use of statistical linear models by introducing the method 
called linear regression. Often we are interested how a factor with continuous levels 
may explain the variability in some studied system. As an example we propose a model 
that food abundance (e.g. microalgae) determines growth rate in a copepod. The data in 
Table 2 suggests that there is a relationship between food abundance and growth rate. In 
this case we have a fixed factor Food with 4 selected levels and we record the response 
in terms of growth rate. The factor Food is fixed because we let the levels represent 
more or less equal intervals within a food range normally encountered in the field.

Table 2. Growth rate of a copepod at different food levels.

Food abundance
(µg Chl l-1)

Growth rate
(µg day-1)

3 7.6
5 19.3
10 25.8
15 31.5

 
There are two things of interest here:
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1. Test the H0 that there is no relationship between the factor levels and the 
response (growth rate).

2. Describe the relationship numerically, i.e. to find an equation predicting growth 
rate if we know the food abundance.

A linear regression analysis addresses both these tasks. A linear regression analysis 
attempts to fit a straight line that best represents the relationship between the factor 
levels and the response variable. Often the factor levels are called the independent 
variable and the response is called the dependent variable, the logic being that we 
control the independent variable (a fixed factor) causing the dependent variable to 
respond.

A linear regression tests the hypothesis that there is a functional relationship between 
two variables X and Y. With a function we generally mean that a selected value of X 
determines the value of Y. Even if it is not always clear that X really causes Y, a 
statistical regression requires that we control the levels of the factor X. In the example 
above we control the levels of food, and we further assume that these levels do not have 
any variance (error), i.e. they have fixed values. In practice this is rarely true and this 
requirement can be relaxed by stating that the variance of X should be much smaller 
than the variance of Y. If we repeat the study in Table 2 we will find that for the same 
food level the dependent variable growth rate will differ each time.

In Fig. 2 the data in Table 2 are plotted in a graph. It is quite clear that as food increases 
so does growth rate. The growth rates in Fig. 2 can be viewed as a sample from a true 
population of growth rates represented by the frequency distributions shown in Fig. 3.
Fig. 2. Data on growth rates of a copepod offered different food concentrations.
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We do not know the underlying frequency distributions, but the regression analysis 
assumes that these are normal distributions with the same variance (homogeneous 
variances).

Fig. 3. Same data as in Fig. 2 but with assumed normal frequency distributions generating the 

sample in Table 2.

The straight line we will fit to the sample of growth rates in Fig. 3 may be viewed as a 
statistical model to explain some of the variance in growth rates. The linear model is: 

Yi = a + b*Xi +ei

Where a is a constant determining the intercept of the regression line (growth rate when 
food concentration is 0), b is a constant determining the slope of the line (indicating 
how strongly growth rate depends on food), and ei is the deviations between the 
regression line and each sampled growth rate, representing the unexplained or residual 
variability.

Now let us perform a partition of variation, in our case with copepod growth rates. As in 
the previous case with the mussels we can ask what is the total variability for the 
growth rates. This is measured by the SS to the mean of growth rates as shown in Fig. 4.
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Fig. 4. The horizontal line represents the mean growth rate, and the vertical bars are the 

deviation from the mean to individual sample values. Also shown is the sum of squares (SS) of 

these deviations measuring the total variability.

Fig. 5. The fitted regression line with the explained SS (278) and the residual SS (38). 
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Some of the SStotal of 316 can now be explained by the linear model above by fitting a 
straight line. The constants a and b are estimated to maximize the SS explained by the 
line (called the least square fit). In Fig. 5 the regression line is plotted together with the 
SS explained and the residual SS of the variability not explained by the line.

As pointed out in the beginning of this section we can determine the equation for the 
fitted line to allow prediction of growth rates for new levels of food concentration. The 
equation of the line is determined by the constants a and b and can be written as:
 Y=1.79*X + 6.3
We can also calculate how much of the total SS the line explained which in this case is 
278 / 316=0.87 (or 87%). This quantity is called the coefficient of determination or 
simply r2 (“r-square”).

So far we have only described the relationship between food concentration and growth 
rate. Now we turn to the actual test of the hypothesis that food concentration affects 
growth rate. H0 is in this case that there is no relationship. We will again use statistical 
inference and the statistical H0 specifies the probability distribution of some statistic 
when there is no true relationship, i.e. when the slope b is zero. We have previously 
used the statistic t and we will now introduce a  new statistic called F, a statistic that 
will be the main focus on the rest of the course.

Analysis of variance and the F-ratio

Previously we have calculated the t-statistic from the means of two samples and asked 
if the t-value is so large that it is unlikely that the two samples come from the same true 
population. If the t-value exceeds the critical value for the type I error that we have 
specified (e.g. α=0.05) we reject H0. We can do a similar trick by using the sample 
variance. Assume a known true population that is normally distributed. If we take two 
samples, calculate the sample variance and then form a ratio, 

€ 

s1
2 /s2

2 ; we expect that this 
ratio on average will be 1. Due to the fact that we will most of the time draw non-
representative samples most ratios will deviate from 1, and the smaller the samples the 
more likely that we get large deviations. In Fig. 6 we can see the result of many such 
ratios of two samples (n=10) coming from the same true population. The ratio is called 
the F-ratio and the probability distribution it follows is called the F distribution (F after 
the famous statistician Ronald Fisher). As expected the peak of the distribution is close 
to 1. Also note that the distribution, of course, cannot be less than 0. One more thing, 
there was one t-distribution for each number of degrees of freedom (df). The F-
distribution is determined by two df: the df of the variance in the numerator of the ratio 
and the df of the denominator of the ratio. This is often presented as:
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Fig. 6. Frequency distribution of the F-ratio between variances of 2 samples (n=10).


 Fdf 1,df 2( ) =
s1
2

s2
2

So how can we use this piece of knowledge? We are now ready to take a large step and 
carry out the first Analysis of variance, or in short: ANOVA. We resume our regression 
analysis from above. Table 3 below shows an ANOVA with the aim to test H0 that there 
is no relationship between food and growth rate for the studied copepod. So what does 
Table 3 contain?

1. The first column shows the two sources of variation we have partitioned, and 
also their total sum of variation.

2. The second column contains the SS.
3. The third column contains the degrees of freedom (df) for the two sources of 

variation. The concept of df is still perhaps difficult but is as before: the number 
of independent observations (or numbers) minus the number of parameters 
needed to estimate that source of variation. For the residual SS we take the 
squared deviations between 4 independent growth rates and the line, where the 
line is determined by two parameters (slope and intercept), so the df is 4-2=2. 
The SS for the regression line depends on the two independent parameters (slope 
and intercept) and the SS is calculated from this line to the mean of growth rates, 
so df is 2-1=1. The df of the total SS is simply the number of growth rates minus 
their mean, i.e. 4-1=3. Note that the df for the different sources of variation must 
add up to the df of the total variation. It is good practice to always check that the 
df add up.
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Table 3. Analysis of variance (ANOVA) for the test of regression of growth rate against food 

concentration.

Source of variation SS df MS MS estimates F
Regression line 278 1 278 σe2 + β2Σx2 14.5
Residual 38 2 19        σe2

Total 316 3  
4. The fourth column labeled MS for Mean Square contains the standardized SS 

which is found by dividing the SS with the df. The reason we calculate the MS is 
that we do all this to arrive at a statistic that is based on the ratio between two 
variances (the F-ratio!). A variance is the SS divided by its df, essentially the SS 
is standardized by the number of independent deviations.

5. The fifth column is fundamentally important and is at the heart of any analysis 
of variance. If we start with the residual MS, what is it that we really calculate? 
The residual MS estimates the unexplained variance after the regression line has 
been fitted (see Fig. 5). We then walk up one notch to the source of variation of 
the regression line and ask what does this MS estimate if there is no true 
relationship between food and growth rate, i.e. the H0 is true. If the true slope is 
zero most slopes will still deviate from zero due to non-representative samples 
of growth rates. The line will vary up and down from one experiment to the 
next. The variation in slope only depends on the residual variance, i.e. 
differences in growth rate from one food level to the next (when food level has 
no effect). Figure 6 shows how 100 sampled slopes look like when there is no 
true relationship.

Fig. 6. Samples of 100 slopes when there is no true relationship between food and growth rate.
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6. In fact, The MS for the regression line also estimates the residual variance (σe2) 
when there is no true relationship. So, under H0 the MS for the regression line 
and the residual MS estimate the same thing, and the ratio between them is 
expected to be close to 1. This is of course the F-ratio. Now note, that when 
there is a true relationship and the slope b >0 there is an added component of 
variance (β2Σx2) that will increase the MS for the regression line. Clearly, as the 
relationship between food and growth rate increases, the F-ratio is also expected 
to increase. The main question is now how great the F-ratio should be to make 
us reject H0. As in the case with the t-statistic, there are tables of the F-statistic 
where we can look up the probability to obtain a particular F if H0 is true. In our 
case the F-ratio is 14.5 with 1 df in the numerator and 2 df in the denominator. 
The probability of getting this F when H0 is true is 0.06 and we consequently 
retain H0 that there is no effect of food on growth rate. From the inspection of 
Fig. 2 we had probably expected a relationship, but obviously our test of the 
hypothesis had poor statistical power because we had so few data points, or in 
other words, there were few degrees of freedom for the statistical test. The risk 
that we have committed a type II error seems rather great. Had we performed 
some estimate of the statistical power before the experiment this may have made 
us include some more measurements of growth rate. 

Also note that the ANOVA above was inherently one-sided. The alternative to H0, i.e. 
that there was a relationship, could only increase the F-ratio. This is a very useful 
property of F-ratios that we will exploit in the next part.

Assumptions for a regression analysis

We conclude this part with a summary of assumptions underlying the regression 
analysis.

1. As before all measurements (the Y-values) must be independent. In regression 
analyses this is often negelected, e.g. growth rate is estimated from several 
measurements on the same individual at different times. 

2. The variance of the measurements should be homogeneous. Often, in regression 
analyses only one data point for each value of X is collected and it may be 
difficult to evaluate if the variance is similar in the whole range of X. Many 
biological data are expected to show heterogeneous variances and this is a 
serious problem in regression analyses and may require statistical expertise.

3. As pointed out before, the regression analysis assumes that X is controlled by 
the researcher and that the variance of X is much less than variance in Y. If this 
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is not the case and both X and Y are sampled with some error you should contact 
statistical expertise.

4. The regression analysis is exactly valid only if the data come from normal 
distributions (see Fig. 3). Again, if only one data point for each X is measured 
this is difficult to evaluate. If the data are known or expected to deviate strongly 
from a normal distribution it is possible to exploit the Central Limit Theorem by 
measuring several Y for each X and then use the mean of the Y:s which will tend 
to be normally distributed.
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