
Experimental design and statistics for Marine Ecology

Part 1
STATISTICAL ANALYSIS AND DESIGN OF ECOLOGICAL EXPERIMENTS  -  

INTRODUCTION

The scientific method

One definition of science is that it aims to explain observable phenomena through studies of 
the patterns and processes generating them. One example of a phenomenon that requires an 
explanation is the observation that newly settled larvae of cockles (a bivalve) are negatively 
correlated to adult cockles. There may be several explanations, or models, for this observed 
pattern, e.g.:

1. Predation on settling larvae by adult cockles
2. Burrowing activity by adult cockles kills larvae
3. Other predators on settling larvae hide among adult cockles
4. An active choice by larvae to not settle among adult cockles

From these models it is possible to generate the following testable hypotheses:
• Hypothesis for model 1: larval remains should be found in stomachs of adult cockles
• Hypothesis for model 2: preventing adults from burrowing should result in more 

settling larvae
• Hypothesis for model 3: cages that exclude other predators should result in more 

settling larvae
• Hypothesis for model 4: preparations with extract of adult cockles should inhibit 

settling of larvae

After proposing these hypotheses we then proceed to plan different studies to collect 
observations or to do experiments in order to test if any of these hypotheses are supported or 
should be rejected. This process is at the heart of scientific investigations and it takes 
considerable understanding and practice to develop the skills necessary to build knowledge 
based on the scientific method. This module of experimental design and statistical analysis 
aims to an integrated understanding of the scientific method with emphasis on practical use. 
During the course you will carry out practical projects applying the theory and methods of 
hypothesis testing, experimental design and statistical analysis.
One version of the scientific method, as defined here, is summarized in Fig. 1 below.

Written by P Jonsson 1995, modified by M Lindegarth and C Andre 2001 and by P Jonsson 2008 & 2009



Fig. 1  Formal logical loop of the scientific method.

How can we reliably detect patterns of interest?

Often a scientific study begins with the observation of a phenomenon, or pattern, that we want 
to explain and understand. But how do we know that the pattern is real? It is well known that 
we do not observe the world objectively. Instead we are often biased in our observations by 
both conscious and unconscious aspects. Do we already have a lot of knowledge of a 
particular environment? Have we recently read an influential book about similar patterns? Are 
we tired or hungry? All such factors may contribute to how we observe the world.

In the example above about cockles we may one day observe the pattern “there are fewer 
settled larvae where I also find adult cockles”. But is this observation generally true? In a 
complex world patterns often vary in space and time. Was our observation just a coincidence 
(a random pattern) or were we unconsciously longing to see this pattern? Clearly, it would be 
a step forward if we could document this observation in an objective way, find out if it is a 
general pattern, and maybe also something about the magnitude of the pattern, i.e. how few 
larvae that settled among how many adults.

From the way we observe the world it is clear that already the detection and description of 
patterns require a systematic method. In our cockle example we could design a structured 
observation as follows:
1. Identify the area that we will include in our observation
2. Randomly select plots with many and plots with few adult cockles
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3. Take representative samples of sediment from each of these plots, and count all larvae 
found.

4. Compare the number of larvae found in plots with few to plots with many adult cockles, 
possibly with some statistical method to find out if the difference is greater than could be 
expected by chance only.

In ecological studies, and indeed in most scientific disciplines, quantitative measurements 
form a very important part of most methods. With quantitative knowledge it is possible to 
make clear descriptions of patterns, and hypotheses about what causes these patterns can be 
precisely formulated. In many cases it is necessary to include quantitative information to be 
able to separate different competing hypotheses.

When we quantify things, e.g. number of settling larvae, this is called a variable, because it 
can take on different values. In this case we counted the frequency of larvae for two different 
classes or categories (high and low abundance of adults). This type of variable is called 
nominal. Often things are measured on a scale, e.g. the length of mussels or the age of a sea-
weed. Such variables are called ordinal and they can be continuous or discrete. Two ordinal 
data have a defined interval between them, e.g. the difference in length between two mussels. 
In contrast, for ranked variables, only the order of the different data is known. Ordinal 
variables can be transformed into ranked by sorting, e.g. three mussels with lengths of 4.3, 3.6 
and 5.7 cm will have the ranks 2, 3 and 1.

Frequency distributions
Fig. 2a (upper panels) Samples from the two true populations. 2b (lower panels) Frequency 

distributions of two imagined true populations of mussel shell lengths (see text for explanations).
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Biological systems is characterized by their tremendous variability at most levels. This 
biodiversity makes biology so fascinating. But the variability also makes it more difficult to 
detect patterns and to find out their causes. In comparison, empirical data in chemistry and 
physics are often much less variable making it easier to study cause-effect relationships. 
Experimental design and statistics form an important part of ecological science just because 
the studied systems are so variable in space and time.

What does all this variation mean? Let us take an example. We want to know if, and how 
much, blue mussels differ in length between the Swedish west and east coasts. We could take 
one mussel from each coast and compare their lengths. But we soon discover that not all 
mussels on the same coast have identical lengths. So we begin to measure many individuals, 
record their lengths and plot them as shown in Fig. 2a. As we measure more and more 
mussels we approach the true frequency distributions of all mussels shown in Fig. 2b.

The length of all mussels from the two coasts can be viewed as two frequency distributions. 
A frequency distribution (e.g. Fig. 2) is a plot of classes of observations (x-axis) and how 
often these classes occur (y-axis). There are several ways of characterizing frequency 
distributions. We can plot them as in Fig. 2 or we can calculate different parameters to 
describe important aspects of the distributions.

Parameters

1.  The location parameter.  There are several location parameters (e.g. mean, median and 
mode) that measures where on the x-axis the frequency distribution is located. However, the 
most common is the arithmetical mean which has the property that the sum of distances from 
each individual to the mean is zero. In shorthand the arithmetical mean (µ) of the true 
population is calculated as:

  µ =
Xi

i=1

N

∑
N

2.  The dispersion parameter. The second most important parameter describing a frequency 
distribution is the dispersion parameter that indicates how much individual data are spread 
around the mean. The most common measure of dispersion is the variance. The variance (σ2) 
of the true population is defined as the sum of squared deviations to the mean divided by the 
number of deviations, i.e. the number of observations. The variance is calculated as:

σ 2 =
Xi − µ( )2

i=1

N

∑
N

Often the variance is converted to the same units as the mean by taking the square root. This 
gives the standard deviation (SD):
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σ = σ 2

There are other parameters describing aspects of a frequency distribution. The most common 
are the skewness (σ3) measuring the symmetry of the left and right tail of the distribution and 
kurtosis (σ4) measuring the peakiness of the distribution. Note that information is lost by 
characterizing a frequency distribution with a few parameters. Thus, two different 
distributions may have the same parameters.   

Samples

The objective with our study of mussels is of course to say something about the real world, in 
this case the length of mussels on different coasts. Out there on the coasts, there are two 
statistical populations, one on each coast, probably consisting of billions of mussels (Fig 2b). 
To learn something about these true populations we have drawn two samples (Fig 2a). To 
draw any valid conclusions about the true populations the samples need to be representative. 
There is actually only one representative sample from a true population; the sample that has 
the same relative frequency distribution as the true population. The best sampling strategy is 
to make it equally probable for each individual to be included in the sample. This is often a 
major challenge and requires much thought. How do we know if a sample is representative? 
In real life this is generally poorly known and requires a lot of knowledge about the 
population we want to sample. When little is known about the true population it is common 
that sampling is random. This prevents us from making subjective choices where to sample. 
Random sampling is not necessarily the best strategy if there is detailed information about, 
e.g. the spatial distribution of an organism. In this case different types of stratified sampling 
may lead to more representative samples.

The problem of obtaining representative samples is seriously overlooked. One example is that  
the efficiency of many marine sampling equipment, e.g. bottom grabs, differs among clay, silt 
and sand sediments. The differences in the sample frequency distributions may then just 
reflect the sampling efficiency and not differences among the true populations. Can you think 
of other cases where it is difficult to obtain representative samples? 

The central limit theorem

When thinking closely,  it seems almost impossible to conclude something reliable about 
millions of mussels in the field from a small sample of a few individuals. Fig. 3 shows an 
example where random samples with 5 mussels (n=5) are taken from a very large true 
population. Also shown are the frequency distributions of an increasing number of sample 
means. There are two things to observe:

Fig. 3.  Frequency distributions showing the original true population and three sample mean 

distributions with increasing number of samples. The sample size is 5.  
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1. If the true population Fig. 3 forms a so called normal distribution, the distribution of 
sample means also approaches a normal distribution

2. The distribution of sample means is more narrow, i.e. has a smaller variance than the true 
population.

Now, it may not be so surprising that the sample means from a normal distribution also tend 
to a normal distribution. But the very interesting property of random samples is that their 
means will approximately form a normal distribution also when drawn from true populations 
that are not normally distributed. In Fig. 4 this is illustrated with a sample mean distribution 
drawn from a nearly uniform true population, and in Fig. 5 with sample means drawn from a 
skewed true population.

The tendency of sample means to be normally distributed regardless of the distribution of the 
true population is stated by the Central Limit Theorem (CLT). CLT further states that there is 
a specific relationship between the variance of the true population and the distribution of 
sample means. Figure 6 shows samples of size n drawn from a true population with mean µ 
and variance σ2. For a very large number of samples the sample mean distribution also has 
mean µ but with variance σ2/n. 

Fig. 4. Distribution of sample means (lower panel) drawn from a near uniform true population. 

Fig. 5. Distribution of sample means (lower panel) drawn from a skewed true population.
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The relationship between the variance of the true population and the distribution of sample 
means implies that as we increase the sample size n the variance of the sample mean 
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distribution (σ2/n) becomes smaller and smaller. It makes intuitive sense that the mean 
of a large sample should vary less from sample to sample, than a small one. In a large sample
Fig. 6.  Schematic drawing of the relationship between the distribution of the true population and the 

sample means. Note that X is the value of a single individual while 

€ 

X is the mean of a sample. 

it is less likely to obtain means that contain measurements from only one tail of the true 
population (Fig. 6). The CLT can also be mathematically derived in terms of probability 
theory.

As we will see later, many statistical methods work surprisingly well for our ambitious 
objective to draw conclusions about natural phenomena from rather small samples. However, 
it should be pointed out that the CLT does not apply well for some distributions of true 
populations. The most important cases are highly skewed distributions (more than in Fig. 5) 
and distributions with many peaks (multimodal).

The normal distribution

The normal distribution (Fig. 7, “the bell curve”) was introduced above, and the normal 
distribution is found in any textbook on statistics. Why is it so important? Without going into 
any mathematical details there are two major reasons:

1. Many natural processes, e.g. biological, that depends on the collective effect of many 
small contributions tend to be normally distributed. And many other non-normal

 Fig. 7. The standard normal distribution with µ=0 and σ2=1. 

distributions occurring in nature can often be easily transformed to a normal distribution.
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2. As explained above and stated by the Central Limit Theorem, sample means tend to be 
distributed as a normal distribution regardless of the original distribution of data.

Because the normal distribution has a defined shape and can be easily determined if we know 
the mean and the variance we here have an important link between our sample and the 
unknown true population.

One important use of frequency distributions is to convert them to probability distributions. 
The distribution of mussel lengths in the true population (e.g. the lower panel in Fig. 2) shows 
how many mussels there are in each length class. If we divide the frequency of each class by 
the total number of mussels, we get the proportion of mussels in each length class. Since all 
mussel lengths that can exist are represented in the distribution, the proportions of all classes 
should sum up to 1 (or 100%). We can also express this as a probability. If the proportion of 
mussels in the length class 5-6 cm is 0.3, the probability is also 0.3 that one mussel drawn 
from the true population comes from this class. With a probability distribution we can now 
ask questions like: what are the 5% most extreme means? Fig. 8 shows the boundaries of the 
2.5% shortest and 2.5% longest mussel lengths, with the 95% most common lengths in 
between. As seen below this can be developed into a tool to say something about how close 
our sample is to the true population mean.

Fig. 8. Probability distribution of sample means showing probabilities of extreme values.

Standard deviation, standard error and the precision of means

The first important question we want to answer is:
 If we have taken a sample from an unknown true population is it then possible to say 

something about the true mean µ based on the data we have in our sample?
We will approach this essential question in steps.

1. We first make the unrealistic assumption that the true mean µ in Fig. 6 is unknown but 
that we actually know the true variance σ2= 4.

2. We draw a sample of 9 mussels with lengths 6, 4.5, 7, 3, 7.5, 9.5, 4, 7.5 and 9 cm. The 
sample mean (

€ 

X ) of the 9 mussels is 6.4 cm.
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3. From the relationship in Fig. 6 we know that the variance of the distribution of many 
sample means of size n is σ2/n, i.e. 4/9=0.44. Note this small trick; we only have one 
sample mean, but if we had repeated this sampling many times we would expect (from 
CLT) that the distribution of means has a variance of σ2/n.

4. The variance is calculated from the sum of the squared deviations to the mean so all 
the data are squared compared to the mean and now have unit cm2. We can easily 
convert the variance to the same dimension as the mean by taking the square root. The 
square root of the variance is called the standard deviation (SD):

SD = σ = σ 2

and the square root of the variance of the mean distribution is called standard error 
(SE):

SE = σ

n
=
SD
n

5.  Note that SD is a biological characteristic of the true population. Because of, e.g. 
genetics, food availability, spatial variability etc. the mussels show a particular mean 
length with a particular SD. SE on the other hand is the standard deviation of our 
distribution of means. We can affect SE by choosing a particular sample size n. The 
larger the sample size, the more narrow SE and the less difference among sample 
means.  

6. It turns out that for a normal distribution (Fig. 7) the width of one SD or SE on either 
side of the mean includes 68% of all values. So for a distribution of means the ±SE 
includes 68% of all expected means. However, 68% is not a very round figure. Since 
all normal distributions have the same basic shape and are only determined by the 
mean and the variance, it is possible to increase this area of means to 95% just by 
multiplying the SE with 1.96.  The number 1.96 is just a mathematical feature of 
normal distributions. If we instead are interested in the area including 99% of all 
means we multiply SE with 2.6.

7.  We can now construct what is called a confidence interval for our sample mean. In 
our mussel example we can calculate an interval that is expected to include 95% of all 

the means we can draw from the true population. The SE is 2/

€ 

9 =0.67, so the lower 
boundary of the interval is 6.4-1.96*0.67 = 5.1 and the upper boundary is 
6.4+1.96*0.67 = 7.7. We conclude that 95% of all means from a sample of size=9, that 
can be drawn from the true population of mussels, will lie within this interval. The 
sample mean estimates the true mean but with some error depending on not drawing a 
perfect representative sample. So, if this interval contains all possible means with 95% 
probability, this allows us to make the following very powerful statement about the 
unknown mean of the mussels in the true population: There is a 95% probability that 
the true mean lies in the interval 5.1 – 7.7 cm. And this is the answer to our question 
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about what we can say about the true mean µ based on the data we have in our sample.
8. It is important that whenever a mean of a measured variable is presented it should 

always include the SE and the sample size, or a confidence interval for some 
probability, e.g. 95%.

Sampled variance and the t-distribution

In the first step of the sequence leading to the confidence interval above, we assumed the 
unrealistic case that we knew the true variance,σ2, of the mussel population. Obviously, this is 
normally not the case and the whole exercise of finding the confidence interval for the true 
mean may again seem futile. However, there is a solution. We begin by estimating the true 
variance from our sample. This is similar to the calculation of the true variance with two 
exceptions. We, of course, do not know the true mean so instead the sample mean is used to 
calculate the sum of squared deviations, and we divide this sum by the sample size minus one 
(n-1). The sample variance, called s2, is thus found as:

    s2 =
Xi − X( )2

i=1

n

∑
n −1

First, we see that all we need for the sample variance is found in our sample. Secondly, it 
seems strange why we should divide by n-1 and not n. This is not so simple to explain. 
Although there seems to be n independent squared deviations in the calculation of s2, there are 
in fact only n-1. This is because we need to calculate the mean from the same sample that we 
use to calculate s2. Here we lose one degree of freedom since if we know the sample mean, 
here 6.4 cm, and the lengths of the first 8 mussels, the 9th mussel must be 9 cm. The same 
applies to the squared deviations; if we know the mean and 8 of them the 9th is locked. So, to 
estimate the true variance from the sample the sum of the squared deviations are divided by 
the available, degrees of freedom, in this case by n-1.

The standard deviation, SD, is estimated from the sample variance 

€ 

s2 and the SE is s/

€ 

n .  
Armed with an SE calculated from the sample it should now be possible to calculate a 
confidence interval without the need to know the true variance. However, one serious obstacle 
still remains. It turns out that when we have to estimate the true variance from the sample we 
add a new uncertainty because this estimate usually differs from the true variance, i.e. there is 
some sampling error. The smaller the sample size, the larger this error can be. This has an 
important effect when we want to construct the confidence intervals around our means. If the 
sample variance adds an additional uncertainty to the uncertainty already present for the 
sample mean, this should act to expand the confidence interval. That is, we need some way to 
find new boundaries for the 95% confidence interval we constructed under point 7 above; a 
boundary that takes into account the added uncertainty from the sample variance. Obviously, 
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the number 1.96 we multiplied the SE to include 95% of all means should be larger, and 
should increase as sample size gets smaller. One way to solve this problem is as follows:

1. We call the new and yet unknown number that we must multiply with SE to get the 
true 95% confidence interval for t95%. A confidence interval is the same as saying that 
the difference between our sample mean and the true mean should be less than 
SE*t95% with 95% probability, or:

              −SE ⋅ t95% ≤ X − µ ≤ SE ⋅ t95%
if we divide by SE we get:

             −t95% ≤
X − µ
SE

≤ t95%

2. We then identify a large known population, e.g. 1000 dead mussel shells. All these are 
first measured to calculate the true mean shell length and the true variance and SD. 
From this true and known population we draw a sample of let’s say 4 mussels. The 

sample mean and SE are calculated. We also calculate 

€ 

X −µ( ) /SE, save this result and 

repeat this procedure with a new sample of 4 shells. This is done for hundreds of 

samples and we then plot the frequency distribution of our measure 

€ 

X −µ( ) /SE.

Fig. 9. The t-distribution for n=4 and n=30 (shown in red). The normal distribution is shown in blue. 

Also indicated are the intervals for the 95% probability area for the t- and normal distributions.

3. In Fig. 9 the results of our exercise is plotted for two sample sizes, n=4, and n=30. The 

red bars in Fig. 9 show the frequencies of the quantity  

€ 

X −µ( ) /SE called t and the 

distribution of t is not surprisingly called the t-distribution. Also shown in blue in Fig. 
9 is the normal distribution with mean=0 and SD=1. It is clear that for small sample 
sizes the t values has “broader shoulders” than the normal distribution, and there is an 
increased probability for large deviations between the sample and the true mean. The 
red line below the graphs shows the 95% confidence interval indicating that 95% of 
all t-values are found within these boundaries. The critical t-values that delimit this 
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interval at n=4 are -3.18 and +3.18. This is at last the t95% that we should multiply our 
SE to find the correct 95% confidence interval! Clearly, for a small sample size like 
n=4, the t-value (3.18) is substantially greater than the 1.96 we could use when the 
true variance was known. In fact the 95% confidence interval based on a sample of 
only 4 mussels became 62% broader. 

4. So, we have now reached the goal of being able to estimate where the true mean 
should lie with some probability based on any sample size. Note that we need a new t-
distribution for each sample size. These distributions or rather the critical t-values for 
a desired probability are found in statistical tables (or as a formula in Excel). Also note 
in the right graphs in Fig. 9 that as sample size increases the t-value approaches that 
for the normal distribution (e.g., 1.96 for 95% probability). Finally, note that tables list 
t-values after the degrees of freedom of the sample variance, i.e. n-1. In our example 
in the previous section with the sample of 9 mussels the t-value with 8 degrees of 
freedom for 95% probability is 2.31 and the true mean should lie within 6.4 ± 1.5 cm 
(check this yourself). 

Testing hypotheses – test a sample against a hypothetical value

Apart from having solved the problem how to construct the confidence interval around a 
sample mean, the procedure we have walked through also demonstrates the principal for a 
statistical test. Statistical tests are often needed to test research hypotheses generated by some 
model we have proposed to explain something about the world. And, the testing of hypotheses 
is one of the main foci of this course.

Let us continue with the example with the blue mussels in Fig. 2. Our very simple model is 
that the west coast mussels have grown large enough for harvest. From previous experience 
we know that the most economical size at harvest is 5 cm. So we hypothesize that the mussels 
in the target area (west coast) have a mean length of 5 cm or longer. We can test this 
hypothesis either by collecting all mussels on the coast and determine if the true mean 
exceeds 5 cm, or we can take a smaller sample and work out the probability that the true mean 
is greater than 5 cm. Of course, under realistic conditions we almost always have to rely on 
small samples. The idea that we can make conclusions, e.g. test hypotheses, about the true 
world from small samples is called statistical inference.  We approach the test of our 
hypothesis that the mussels now are ready for harvest along the following sequence:

1. We begin to formulate a so called statistical null-hypothesis, H0. A statistical H0 
defines a frequency distribution of a parameter calculated from our sample (e.g. mean, 
SE, t) when the hypothesis in not true, in our case when mussels are shorter than 5 cm. 
The H0 should include all the possibilities not covered by our hypothesis, here that 
mussels are longer than 5 cm. If our test rejects H0 there is thus logical support for our 
hypothesis.
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2. We then take a sample (the same 9 mussels as above). The mean and SE are 6.4 and 
0.75 cm, respectively. If H0 is true, the maximum true mean is at 5 cm. How should a 
sample mean of 9 mussels from such a population with a true mean of 5 cm be 
distributed? We can change this question a little bit by asking how the difference 
between the sample mean and the true mean (

€ 

X −µ ) should be distributed. The 
answer is that it should be distributed as t*SE with 8 degrees of freedom (as shown 

above). So, H0 could be defined by:

€ 

t =
X − 5
0.75

. 

3.  In Fig. 10 the distribution of t is shown if our H0 is true. As indicated by the blue area 
there is some low probability that we draw samples with a large difference between 
the sample mean and 5 cm even from a population with a true mean of 5 cm. 
Fig. 10. The t-distribution for n=9 (8 degrees of freedom) if H0 is true.

Now, here comes a very important way of thinking about statistical inference. In our 
sample of 9 mussels we calculated a t-value of (6.4-5)/0.75=1.87.  What is the 
probability that we get a t-value of 1.87 or larger under the H0 distribution in Fig. 10? 
The critical t-value delimiting the 5% area of the highest t-values is 1.86, so the 
probability of getting such a sample if H0 is true is a little less than 5%. When we test 
if H0 is true or not we have to state how low the probability should be for a sample 
statistic (in this case the t-value) to come from the distribution defining H0. In this 
case we beforehand decided to use the 5% probability level. We can now conclude that 
the sample of the 9 mussels did not support the H0 that the mussels were 5 cm or 
smaller, i.e. it is OK to harvest them. We have here performed the first statistical test!
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One- and two-tailed tests

Note that a statistical test of H0 can often be either one- or two-tailed. In the example above 
we formulated H0 as a one-tailed test. The alternative to H0 only considered a true mean 
greater than 5 cm. Accordingly, all our 5% most improbable t-values were found in the upper 
tail of the t-distribution in Fig. 10. However, in many cases the alternative may include both 
high and low t-values. Let’s illustrate this with another example. A boat is seized by the coast 
guard because there are reasons to believe that mussels are stolen from a nearby mussel farm. 

Fig. 11. The t-distribution for n=30 (29 degrees of freedom) if H0 is true. Also shown in blue are the two 
tails with the lowest and highest t-values corresponding to 2.5% each of the total probability.    

The boat owner claims that she has collected the mussels from a public beach. The mean size 
of mussels (mean=5.5 cm) in the farm is very well known, and a sample of 30 mussels is 
taken from the boat. The question is now if it is probable that the mussels from the boat come 
from the population of farmed mussels. H0 is here that the mussels in the boat indeed come 
from the farm population, and in that case we expect the t-statistic (t-value) of the sample will 
belong to the most probable 95% area of the t-distribution (the red area in Fig. 11).

In contrast to the one-tailed previous example, this alternative hypothesis, i.e. that the mussels 
in the boat came from elsewhere include populations with both smaller and bigger mussels 
than a mean of 5.5 cm. Therefore both the lower and the upper tail of the t-distribution are 
used to reject H0, i.e. we have a two-tailed test. Note that the critical t-statistic now should be 
selected to include the 2.5% lowest and the 2.5% upper tails of the distribution to add up to 
the 5% probability where we consider it unlikely that the mussels come from the farm. This is 
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achieved for a sample with 29 degrees of freedom if we (from a table) select a critical t-value 
of ±2.05.

Testing hypotheses – test of a difference between two samples

Most research hypotheses are tested with more complex information than a sample against a 
known true or theoretical mean. A simple example is to test the hypothesis that mussels are 
larger on the west coast than on the east coast. Here we have a hypothesis about two 
populations with unknown parameters. But fortunately we now know how to estimate the true 
mean and variance through samples. We can test our hypothesis by the following sequence.

1. First, the target populations are defined, e.g. using maps. There are many difficult 
questions here. Should we include all of the coast or should we exclude areas (e.g. 
deep water) where mussels do not usually live? What about very exposed shores 
where wave action tend to exclude mussels? In the Baltic Sea we should probably 
exclude the coast above N 63° which is the approximate northern limit. Nevertheless, 
at last we have defined our target populations on the east and west coasts.

2. We then randomly collect mussels across the target areas on both coasts and we end up 
with the sample distributions shown in Fig. 2.

3. The samples suggest that the west-coast mussels indeed are larger. But, there is always 
some probability that we could have gotten two rather different samples although they 
are drawn from populations with the same true mean and variance. The question, as 
we saw above, is how small that probability is and if we regard this probability so 
small that we decide that the samples come from different populations.

4. We formulate a H0 that the two samples come from a single population with the same 
mean and variance. If they come from the same population we expect that the 

difference of the sample means would be on average 0, i.e. E Xw − Xe( ) = 0 (E 

indicates expected value). What about the SE of this difference between two samples? 
If we take the difference between two numbers that both have some uncertainty it 
seems intuitive that the difference has even more uncertainty. It can be shown that if 
two sample means have the uncertainty SE1 and SE2,  the uncertainty of the difference 

(and also the sum) is SE1
2 + SE2

2 . So in analogy with the one-sample test above we 

should be able to calculate the t-statistic for this difference of sample means if H0 is 
true. We get:

     t =
Xw − Xe

SEw
2 + SEe

2

We also need to decide if the test is considered a one- or two-tailed test. If previous 
experience tells us that mussels on the west coast are always at least as large as on the 
east coast a one-tailed test is appropriate where H0 includes no difference between 
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populations or that the east-coast mussels are larger. Another possible reason for a 
one-tailed test is that we want to test if it is more profitable to exploit mussels on the 
west coast because they could be larger. In this case we are only interested in the case 
where the comparison of the samples indicates that the west-coast mussels are larger, 
and a one-tailed test is appropriate. On the other hand, if we do not know anything 
specific about these mussel populations and we test the general hypothesis that the two 
mussel populations are different in size, then a two-tailed test applies. Finally, we 
decide that we will retain H0 if the t-statistic falls within the 95% probability area. 

5. In our example in Fig. 2 the means from the west- and east coasts are 4.03 and 2.56 
cm, the SD are 1.0 and 1.3 cm, sample size was 73 mussels so the SE were 0.12 and 
0.15 cm. If we calculate t using the equation above we should get t=7.6. One more 
thing needs to be known to be able to decide if we will retain or reject H0. We need to 
know the degrees of freedom of the t-statistic. As before the degrees of freedom is a 
measure of how many independent data observations remain after the statistic is 
calculated (here t). In this case there where 2*73 independent mussel lengths and we 
needed two means to estimate the two SE, so there are 2*73-2=144 degrees of 
freedom (df). If we look up our t-statistic of 7.6 with 144 df in a statistical table we 
will see that it is extremely unlikely to obtain this large t under the H0 distribution. So 
we reject H0 and decide that mussels are bigger on the west coast. We have now 
completed a statistical test a hypothesis about the difference between two sampled 
populations.

Type I and type II errors in relation to a H0

When we test a hypothesis by using statistical inference from samples we need to specify a 
probability where it is unlikely that H0 is true. By convention we often use the 5% probability 
level. It is very important to carefully think about all logical possibilities in a statistical test. In 
one example above we rejected the H0 that mussels were smaller than 5 cm and we gave the 
green light for mussel harvest (Fig. 10). When we say that we test H0 at the 5% probability 

Fig. 12. The four possible outcomes of a statistical test.
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level we also accept that we will make an incorrect decision in 5% of all tests. After all the 
blue area in Fig. 10 includes all the high t-values that can come from samples when H0 is true. 
The error to reject H0 when it is actually true is called the type I error. There is one more kind 
of error that we need to worry about. We may also retain H0 when H0 in fact is false. This is 
called the type II error. An overview of the four possible outcomes of a statistical test is 
shown in Fig. 12. The correct decisions in Fig. 12 do not need any comments. As we have 
seen above the type I error is fairly easy to understand. Figure 13 summarizes the different 
features of the type I error.

The magnitude of the type I error is usually given as α, e.g. we have so far used an α=5% or 
more simply α=0.05. It is important to state tha α you use in hypothesis testing.

Fig. 13. The distribution of a statistic (here t for 7 df) if H0 is true. The red upper tail indicates the 5% 

highest t-values where we decide to reject the H0 (for a one-tailed hypothesis). This is the type I error 

we are prepared to make

The type I error is well known among scientists and normally reported in most scientific 
studies. Less well known and rarely seen is any information about the type II error. This is 
unfortunate because there are several arguments why type II error are more serious than are 
type I errors. Anyway, it is illogical to specify only the type I error and if nothing else is 
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known they should be similar in magnitude. The reason why the type II error is rarely 
considered is that it is more complicated to estimate. Again, let us walk through an example to 
find out more about the type II error.

1. We suspect that the fish in a polluted area may contain more PCB than the allowed 
concentration limit of 2 mg kg-1. 

2. Our model is that fish on average contain more than this limit, and our H0 is that the 
PCB content is equal to or less than 2 mg kg-1.

3. We take a sample (as representative as possible) of 16 fish. The sample mean is 2.16 
and the SE is 0.13 mg kg-1. We then proceed to calculate the t-statistic if H0 is true:  
(2.16-2)/0.13=1.23. The critical t-value for a type I error of 0.05 (one-tailed) is 1.75 so 
we clearly retain H0; we conclude that the PCB limit has not been exceeded.

4. All could end here. But wait, could it not be the case that we have falsely retained H0  
when the true population of fish actually have a PCB concentration greater than 2 mg 
kg-1? This is of course the type II error (Fig. 12). If this error is very large the 
consequence would be that the study we employed would essentially never detect, in 
this case, an important and true increase in PCB. And with some knowledge about 
type II errors this may be evident even before we perform our study. Clearly, such 
studies are not worth the time nor the money.

5. To estimate the type II error we need something important. We need to specify an 
alternative hypothesis, i.e. at what concentration of PCB are we prepared to reject H0.  
In this case we state that the alternative to H0 is that the PCB concentration is ≥ 2.3 
mg kg-1. In other words, we want to know the type II error of retaining H0 when the 
PCB content is equal to or above 2.3 mg kg-1.
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t-statistic

Type I error
0.05

Type II error
0.34

H0: µ=2 mg/kg HA: µ=2.3 mg/kg

Fig. 14. t-distributions for H0: 2 mg PCB kg-1 and the alternative hypothesis 2.3 mg PCB kg-1. 

Also shown is the type 1 error (red area) and the type II error (shaded area) divided by the 

critical t-value.

6. With this alternative hypothesis we have all that is needed to estimate the type II error. 
The trick is now to compare the t-distributions for H0 and the alternative hypothesis. 
In Fig. 14 this is done for 10000 samples in the upper panel. For clarity, in the lower 
panel we use the asymptotic (when number of samples approach infinity) distributions 
based on mathematical expressions. Figure 14 first shows the t-distribution for H0 as 
we are used to (blue curve), with the type-1 error (here α=0.05). On top (in red) the t-
distribution of the alternative hypothesis is plotted showing the t-values expected in a 
sample of 16 fish if the true population has a mean of 2.3 mg PCB kg-1. Remember 
that we, of course, do not know the true mean, but if we get a sample where the t-
value is less than the critical (here 1.75) we will retain H0. This is a correct decision if 
the sample comes from a population with 2 mg kg-1. However, if the sample comes 
from a population with 2.3 mg kg-1 all the t-values in the shaded region will also lead 
us to retain H0 and we commit a type II error. The shaded area in Fig. 14 is the total 
type II error in our case. The type II error is denoted with β which here is 0.34, 
meaning that there is a 34% probability that we commit a type II error, i.e. deciding 
that the PCB limit is not exceeded when in fact the fish contain too much PCB.

7. If the type II error is large we say that the test was not powerful; it had low statistical 
power. Statistical power is simply 1-β which is the area in the t-distribution of the 
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alternative hypothesis to the right of the critical value (the unshaded area). How can 
we reduce the type II error, i.e. to increase statistical power of our tests. Statistical 
power depends on four things:
i) the level of type I error we choose. This is shown in Fig. 15 where we have 
increased α from 0.05 to 0.1 (compare Figs. 14 and 15) and we move the critical t-
value to the left with the result that type II error decreases from 0.34 to 0.2 and 
consequently the statistical power increases to 0.8.
 ii) the variance in the true population. Not surprisingly, it will be more difficult to 
detect an increase in PCB concentration if the true population is very variable. This is 
often not directly under our control, but sometimes the sample variance is inflated

t-statistic

Type I error
0.1

Type II error
0.2

H0: µ=2 mg/kg HA: µ=2.3 mg/kg

Fig. 15. Effect on type II error and power by changing the type I error. 
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due to poor sampling or inadequate analytical methods. Figure 16 shows the effect when 
the true variance is reduced by 33%. The type II error now decreased to only β=0.05.

t-statistic

Type I error
0.05

Type II error
0.05

H0: µ=2 mg/kg HA: µ=2.3 mg/kg

Fig. 16. Effect on type II error and power when the population variance is 33% lower than in 

Fig. 14.

iii) the so called effect size that we want to detect. Again, not surprisingly the 
probability will be higher to detect an increased PCB content if the true mean is even 
higher than in our alternative hypothesis of 2.3 mg kg-1. If we change our alternative 
hypothesis and are content to detect the PCB concentration when it exceeds 2.5 mg 
kg-1 (Fig. 17) this will substantially reduce the type II error and we have a very 
powerful analysis to detect this greater change (β is only 0.012). The effect size that 
we want to detect is our choice. There may here be a compromise between available 
resources (time & money) and how small effect sizes we can expect to detect.
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t-statistic

Type I error
0.05

Type II error
0.012

H0: µ=2 mg/kg HA: µ=2.5 mg/kg

Fig. 17. The effect on type II error and power when the alternative hypothesis is changed to 
allow for a larger effect size (here from 2.3 to 2.5 mg PCB kg-1.

iv) the final thing that affects statistical power is the sample size. Sample size is also 
under our control and as expected the bigger the sample size (or actually degrees of 
freedom) the less risk to commit a type II error. Adjusting the sample size is the most 
common way of controlling the type II error. In Fig. 18 the effect on type II error and 
power of 
increasing sample size is clearly shown.

Fig. 18. The effect on type II error and power when sample size increases.
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What level of statistical power is acceptable?

Because it is still rare to report the type II error no convention has developed about what level 
of statistical power is acceptable. Many argues that statistical power should be at least 0.8 
(β≤0.2). However, logically, there are no reasons why we should by default select different 
levels of type I and II errors. In applied research, e.g. test of a new medical drug, it is common 
that the expected risk of committing type I and II errors are set similar or even that the type II 
error is lower. Risk is here the cost of making a wrong decision times its probability. When 
testing for harmful side-effects in a medical drug the costs of a type II may be much higher 
than a type I error. If we commit a type I error this means that we reject the H0 of no side-
effect when there in fact was no side-effect. The consequence may be that the drug developing 
program is terminated which will certainly involve a loss of money, but likely very much less 
than if we commit a type II error. In the case of a type II error we decide that there is no 
harmful side-effect when the drug in fact is harmful. No action is taken and the drug will 
maybe harm many people before this side-effect is discovered. As many examples show, this 
will be extremely costly and may even cause the close-down of a company. Here we should 
obviously set the type II error a lot lower than the type I error. Even in basic research there is 
logical arguments to care more about the type II error. In the logical loop in Fig. 1 we can see 
that when we reject H0 this is taken as support for our model which we continue to develop 
and elaborate with tests of  more hypotheses. If the model in fact is wrong we will probably 
discover that later. All that is lost is time. On the other hand if we retain H0 when it is wrong 
we will abandon our model and it may take a very long time before we or others return to 
further testing of the model.

Important assumptions for parametric statistics

We have now learnt about how to test hypotheses by using the t-statistic. Before we continue 
our journey through the landscape of experimental design & statistics it is useful to stop a 
moment to consider any limitations of the approach we have used so far. The t-test belongs to 
a family of statistical techniques known as parametric statistics because they are based on 
estimates of the population mean and variance from samples. The other two methods we will 
encounter, linear regression and analysis of variance also belong to his family. For parametric 
statistics there are 3 major assumptions:

1. True populations are normally distributed. The parametric methods are exactly valid 
only when samples come from normal distributions. However, as we saw previously, 
the Central Limit Theorem ensures that sample means are approximately normally 
distributed regardless of how the true population is distributed. This fact makes most 
parametric methods surprisingly robust even for large deviations from the normal 
distribution.

2.  The true populations included in a test of a hypothesis should have the same variance.  
This requirement is called homogeneous variances or in statistical jargon, 
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homoscedasticity. The requirement of homogeneous variances is more important than 
that of normal distribution, and when more than one sample is included we should test 
if the variances are sufficiently similar to allow a parametric test. We will come back 
to this later.

3. Independent samples. This is a very important assumption and is essential for all 
statistical tests. To ensure independence of samples is at the heart of sampling and 
experimental design and we will discuss this a lot during the course. A simple (and 
common) example of non-independent sampling is when we want to sample mussels 
to test if they increase in size in a selected locality. One sample of mussels are 
collected in May, their lengths are measured, they are individually marked and then 
returned to the sea. In August the same mussels are collected again, measured, and a t-
test is performed to test the hypothesis of growth. Here the measurements in May 
certainly influence the measurements in August and the two samples are clearly not 
independent, they are after all from the same individuals. In this case the expected 
effect is that we underestimate the true variance in growth rate; we will get a too large 
t-value, and have a greater type I error than we think with the result that we are more 
likely to reject the H0 when it is true.

From samples to experiments

So far we have only considered model and hypotheses that required one or two samples from 
field populations, e.g. mussels and fish. The rest of these days will be focused on a different 
method called manipulative experiments. In such experiments we change some aspects of a 
biological/ecological system in a controlled way. A correctly performed experiment is the 
most powerful scientific method to distinguish between different models and their predictions. 
The same basic principles for sampling and estimating the parameters of the true population 
apply to experiments. Let us take an example. We have a model (from observations) that the 
sea star Asterias rubens can sense some chemical compounds released by a predatory sea star, 
Marthasterias glacialis, making it possible for A. rubens to escape.  To test this model we 
perform a manipulative experiment. We prepare a chemical extract from seawater where 
several M. glacialis have been living. We add this extract from pipettes in five aquaria with A. 
rubens. We also add an extract from seawater without M. glacialis to another 5 aquaria with 
A. rubens. Then the crawling velocities of all the A. rubens are measured and we test the H0 
that the means with extracts with and without M. glacialis are not different. Although slightly 
more abstract we can imagine a true population of crawling velocities when A. rubens is 
exposed to a M. glacialis extract. Our 5 aquaria is a sample of the much larger true population 
of aquaria containing A rubens and extracts. We again expect the means to be normally 
distributed, and under the conditions that the variances are homogeneous and all the aquaria 
are independent this allows us to use parametric statistics to say something about the real 
world from the outcome of experiments.
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